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Abstract. Neuromorphic computing tries to model in hardware the biological brain which is adept at operat-
ing in a rapid, real-time, parallel, low power, adaptive and fault-tolerant manner within a volume of 2 liters.
Leveraging the event driven nature of Spiking Neural Network (SNN), neuromorphic systems have been able
to demonstrate low power consumption by power gating sections of the network not driven by an event at
any point in time. However, further exploration in this field towards the building of edge application friendly
agents and efficient scalable neuromorphic systems with large number of synapses necessitates the building of
small-sized low power spiking neuron processor core with efficient neuro-coding scheme and fault tolerance.
This paper presents a spiking neuron processor core suitable for an event-driven Three-Dimensional Network
on Chip (3D-NoC) SNN based neuromorphic systems. The spiking neuron Processor core houses an array of
leaky integrate and fire (LIF) neurons, and utilizes a crossbar memory in modelling the synapses, all within a
chip area of 0.12mm2 and was able to achieves an accuracy of 95.15% on MNIST dataset inference.

1 Introduction

Neuromorphic computing which is aimed at modeling the
biological brain on hardware has gone through decades of
research [1], and the ability of the biological brain to car-
ryout rapid parallel computations in real time, in a fault
tolerant and power efficient manner is the inspiration be-
hind it [2]. The third generation of Artificial Neural Net-
work (ANN) Spiking Neural Network (SNN) has proven
to be more effective than its predecessors in this aim, mim-
icking more closely, the behavior of a biological neuron.
The computation of Spiking neurons, like biological neu-
rons are event triggered and communicate via spikes which
could be sparse, and this makes them process information
only when spikes are received. Neuromorphic architec-
tures take advantage of the sparsity of spikes in SNN to
reduce power consumption by power gating parts of the
network that are not receiving spikes at any point in time.
However, an efficient neuromorphic hardware targeted to-
wards edge application and scalable neuromorphic archi-
tecture with large number of synapses requires building
small sized neural Processors with low power consump-
tion, efficient neuro-coding scheme, and fault tolerance.

To enable scalability while maintaining minimal
power consumption and footprint, we presented in our
previous work [3] a Three Dimensional Network-on-Chip
(3D-NoC) SNN based architecture, a different approach
from the conventional 2D-NoC which is limited in scala-
bility, and consumes more power with increased latency
and foot print, when scaling is attempted. The 3D-NoC
based SNN architecture utilizes the merits of Network-
on-Chips and 3D-Integrated Circuits [4] to enhance the
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parallelism and scalability of a neuromorphic processor
in the third dimension, minimizing power consumption
and communication latency as a result of the brief length
and low power consumption of the Through Silicon Vias
(TSVs) [5] employed in inter-layer communication [6][7].
The 3D-NoC SNN based architecture has the spiking
neuron processor cores as the processing elements. These
processing elements are connected in a 2D mesh topology
to form tiles, and then stacked to form the 3D structure.
Communication among the processing elements are made
possible with 3D routers [8] (one for each spiking neuron
processor core).

In this work, we present the architecture and design
of a spiking neuron processor core described in Fig 1
suitable for the 3D-NoC based SNN architecture. The
spiking neuron processor core is designed using the leaky
integrate and fire (LIF) spiking neuron model which
accumulates incoming spikes as membrane potential and
stores in the buffer while experiencing leak, then fires
an output spike when the membrane potential crosses a
threshold. We have chosen the LIF spiking neuron model
because of its simplicity, while maintaining some degree
of biological plausibility, making it easier to implement.
In designing the spiking neuron processor core, we
utilized an SRAM for the N×N crossbar based synapse
(N is the number of neurons) which has the synapse at the
intersection of horizontal and vertical wires that represent
the axons and dendrites of the neurons. An SRAM is also
used for the neuron and synapse memory. A control unit
implemented as a finite state machine is used to control
the operations of the spiking neuron processor.
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Figure 1. Spiking Neuron Processor Core Architecture.

2 Methodology
The spiking neuron processor core design is described us-
ing Verilog-HDL. Cadence tools were used for the syn-
thesis and simulation. The hardware complexity is eval-
uated for power and area. For performance evaluation,
the neuro-core is used to classify MNIST dataset [9] of
60,000 training, and 10,000 inference images on an SNN
with an architecture of 748×48×10 trained off-chip with
backpropagation as an ANN, then converted to SNN [10].
The MNIST images are converted to spikes using Poisson
distribution before being sent to the network for classifi-
cation. Finally, the result is compared with some existing
work and presented in Figure 2.

Figure 2. Area and Accuracy comparison

3 Result
The spiking neuron processor consumes an estimated
power (leakage and dynamic) of 493.5018mW, covers a
chip area of 0.12mm2 and achieves an accuracy of 95.15%
on MNIST dataset inference. The result was compared
with some existing works reviewed in [11]. The compar-
ison shows that the spiking neuron processor core has a
good trade-off between area and accuracy

4 Conclusion and Future Work
This work presents the architecture and design of a spiking
neuron processor core for 3D-NoC SNN, and evaluated

its hardware complexity and performance. Future works
towards realizing the 3D-NoC SNN architecture will
require integrating the spiking neuron processor core
into it, and exploring applications that will leverage the
architecture.
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