SHS Web of Conferences 102, 04019 (2021)
ETLTC2021

https://doi.org/10.1051/shsconf/202110204019

Hardware Acceleration of Convolution Neural Network for Al-Enabled Real-

time Biomedical System

Okada Yuuki'*, Jiangkun Wang, Ogbodo Mark Ikechukwu, and Abderazek Ben Abdallah

The University of Aizu, School of Computer Science and Engineering, Adaptive Systems Laboratory, Japan

Abstract. COVID-19 is currently on the rage all over the world and has become a pandemic. To efficiently
handle it, accurate diagnosis and prompt reporting are essential. The AI-Enabled Real-time Biomedical System
(AIRBIiS) research project aims to develop a system that handles diagnosis using chest X-ray images. The
project is divided into UI, network, software and hardware. This work focuses on the hardware, which uses
CNN technology to create a model that determines the presence of pneumonia. This CNN model is designed
on an FPGA to speed up diagnostic results. The FPGA increases the flexibility of circuit design, allowing us to
optimize the computational processing during data transfer and CNN implementation, reducing the diagnostic

measurement time for a single image.

1 Introduction

At the dawn of 2020, the coronavirus disease (COVID-
19), which is induced by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [1] became a global
health crisis. In response to it, countries around the world
put in effect a range of public health measures. However,
the disease continues to spread and as of December 8,
2020, the number of confirmed global cases have risen to
66,422,058, and deaths to 1,532,418 as confirmed by the
world health organization (WHO) [2]. As a result of the
brisk spread and degree of mortality at the break of the cri-
sis, there was an immense demand for medical resources
which could not be met [3]. The shortage and reliability
issues associated with early testing kits needed for precise
diagnosis, and the lack of coordinated systems needed for
the quick response have prompted the need for an alter-
native method of diagnosing and responding to the crisis.
the Al-Enabled Real-time Biomedical System (AIRBiS)
[4] project.

Machine learning which is at the end of the Al spec-
trum has been increasingly seen in application in the med-
ical field [5-7], and is now playing a vital role in com-
bating COVID-19. Several studies have been published
which show a good result on the use of Al in COVID-19
diagnosis. The study in [8] proposed a conceptual frame-
work to screen for COVID-19 by scanning chest CT im-
ages for pneumonia types between COVID-19 and intesti-
nal lung disease. In [9], the authors proposed a weakly
supervised Deep learning framework to detect the proba-
bility of COVID-19 using 3D CT volumes. The authors in
[10] proposed a 3D densely connected convolutional neu-
ral network (CNN) to classify COVID-19 patients as either

*Corresponding Author: Okada Yuuki e-mail: s1250129 @u-aizu.ac.
ip

high risk or low risk by combining CT and clinical infor-
mation. They aimed to predict whether or not a patient
will survive within 14 days based on the patient’s initial
CT scan and clinical information. While these works have
shown impressive results, there remains a need for a com-
prehensive system that not only leverage Al for fast and
accurate diagnosis, but also analysis, real-time reporting,
and timely reference.

2 AIRBIS Overview

In this section, we describe the proposed system AIRBiS
which is based on Deep learning. AIRBIS leverages Deep
learning medical imaging methods to provide not just a
system for accurate diagnosis of COVID-19, but also, a
combination of a real-time edge-based system for detec-
tion/diagnosis, and a cloud-based platform for federated
learning. AIRBiS merges the merits of software and hard-
ware (AI-Chip) to provide a smart management platform
with rapid computation and low power consumption. De-
tection and diagnosis on AIRBIiS as described in Fig. 1 are
made by extracting COVID-19 features from chest X-ray
images [11], and with these features through a CNN on
an AI-Chip, classify patients either as normal or infected.
These AI-Chips, when distributed in testing/diagnosing lo-
cations which could be hospitals, will form a cluster, and
with the help of federated machine learning (FML) an ef-
ficient distributed learning is conducted. The system pro-
vides three user interfaces: one for the FML aggregation,
one for the testing/diagnosing locations, and one for a mo-
bile user interface. The mobile user interface enables users
to upload their chest X-ray images in order to obtain a real-
time diagnosis. In this work however, we focus specifi-
cally on the hardware platform to accelerate the CNN of
the AIRBIiS system.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).

SHS Web of Conferences 102, 04019 (2021)
ETLTC2021

https://doi.org/10.1051/shsconf/202110204019

our Al Diagnosis System

framm = < |Reaktime
[P @'l = diagnosis

Real-time multiple feedback
No.l @) No2l)
No.3 0 Nod ..

[EQJE -

Figure 1. AIRBIS system

Table 1. AIRBiS CNN model

Layer Input Size | Output size
Convl (64,64,1) (62,62,32)
Max-poolingl | (62,62,32) (31,31,32)
Conv2 (31,31,32) | (29,29,32)
Max-pooling2 | (29,29,32) | (14,14,32)
Conv3 (14,14,32) | (12,12,32)
Max-pooling3 | (12,12,32) (6,6,32)
FC1 1152 128
FC2 128 1

3 Hardware Acceleration of AIRBiS CNN

CNN is an established Deep learning algorithm employed
in computer vision tasks, and it is designed to learn spa-
tial features at various pattern levels robustly. Its building
blocks are composed mainly of convolution, pooling and
fully connected layers. The AIRBiS system uses the CNN
model described in Table 1 for the COVID-19 prediction,
and the acceleration of this CNN is aimed at improving
the speed of diagnosis by focusing on data transfer and
computational processing. In carrying out this accelera-
tion in hardware, a field programmable gate array (FPGA)
is considered. This is because FPGA are power-efficient
when compared to software implementation, its circuits
are reconfigurable and suitable for prototyping, enabling
us to explore several acceleration approaches. Also, the
parallelism available in the hardware can be leveraged for
rapid processing. A development flow of hardware de-
sign on FPGA is shown in Fig. 2. The acceleration be-
gins with the creation of the CNN model in python. When
this is determined, the creation begins. To improve the di-
agnostic speed, speed changes can be obtained by meth-
ods of transferring data from shared memory, and also,
pipeline processing and parallel processing are adopted to
shorten the calculation processing time. CNN processes

large amounts of data. Therefore, when accelerating on
FPGA, there is much access to shared memory. The AIR-
BiS CNN uses many loops to perform calculations, and
this requires accessing the shared memory for each calcu-
lation.When this approach is accelerating on FPGA, this
approach is inefficient because the FPGA operates at a
lower clock frequency than the CPU, and utilizing this ap-
proach will make the calculations slower [12]. A better
approach will be to utilize direct memory access (DMA).
Typically, the host processor processes data transfer. How-
ever, when DMA is added, DMA transfers data on be-
half of the host processor. As a result, the host proces-
sor performs only the calculation process, which improves
the calculation speed, as shown in Fig. 3. Besides, since
data is transferred directly using hardware, high-speed and
large-volume data transfer is possible. The use of Buffer
on the FPGA reduces the frequency of memory access
which saves a large amount of data processing time, es-
pecially when dealing with extensive data.

' ™\
Creation of the CNN model by Python.
(. v
iyt
IS)
Design a CNN model in C ++
- vy
L
r N
High-level synthesis of the designed code
|- A
iyt
s ™
Measurement of calculation speed on FPGA
p. S

Figure 2. Hardware development flow using FPGA

3.1 Optimization by Pipelining

By using Pipelining processing [13], which is one of the
instruction execution methods, one instruction is divided
into multiple stages and executed in different circuits, en-
abling the execution of several instructions in parallel. Par-
allel computing is the process of subdividing a particular
process into several smaller, independent processes in a
computer, and having each process run simultaneously on
multiple processing devices. There is a command option
to convert parallelism and pipelining processing automat-
ically on FPGA. However, we could do the parallel pro-
cessing manually because it is faster than the command
option. Also, because data is exchanged between func-
tions and this takes time, data processing could be short-
ened by combining functions that can be combined to re-
duce the exchange of data between functions.

3.2 Optimization by Function combination

Data is exchanged between functions. Therefore, data pro-
cessing could be shortened by combining functions that

SHS Web of Conferences 102, 04019 (2021)
ETLTC2021

https://doi.org/10.1051/shsconf/202110204019

Table 2. FPGA acceleration result (function combination + buffer + Unroll)

Circutized . Convolution Convolution
. Convolution . .
Functions + Pooling + Pooling + Forward
Implementation
p. 612.587 510.757 520.419
Time (ms)
T Main() Main()
CPU | .|| FPGA I ReadTXT() L ReadTXT()
|, — CNN | onn
a CNN_Layer() CNN. Layer(
P Convclalution() — Convolution() + CalcConvolution()
DMA : -— ihear;eoc:y CalcConvolution() E>
h Pooling() Pooling() + MaxPooling()
(a) MaxPooling() L
— Forward() Forward()
D
CPU a| ™| FPGA
£ Figure 4. CNN source code structure
a
P
DMA e : < | Shared
memory
h 2. #pragma SDS data access pattern: Can select the

—
o
—

Figure 3. Memory access methods on FPGA: (a) CPU controlled
memory access. (b) Direct memory access (DMA). The CPU
controlled access method requires the CPU to access the memory
for data. However with the DMA approach, this responsibility is
absolved from the CPU, so that it can focus on the calculation
process.

can be combined to reduce the exchange of data between
functions. The structure of the CNN we designed in C++is
shown in Fig. 4. The functions combined in this structure
are convolution, calcconvolution, Maxpooling, and pool-
ing.

Function description:

e convolution: A function that sends the necessary data
for convolution operations.

e calcconvolution: A function that performs a convolution
operation.

e pooling: A function that sends data to max pooling.

e Maxpooling: A function that implements max pooling.

3.3 Optimization of circuit

In Xilinx, there are high level synthesis (HLS) tools which
provide optimizations using options called #pragma. The
optimization options used in this study are as follows.
The optimization options are written in the C/C++ source
code.

1. #pragma SDS data mem attribute: used to allocate
memory for DMA.

data transfer method as either bulk transmission or
random transmission.

3. #pragma SDS data zero copy: Can direct data trans-
fer from shared memory.

4. #pragma SDS data buffer depth: Set up the buffer.
5. #pragma HLS unroll
6. #pragma HLS Pipeline

5 and 6 are options for parallel processing and pipeline
processing.

4 Evaluation
4.1 Evaluation Methodology

The AIRBiS CNN acceleration was done in C++, using
the Zynq Ultra Scale+ MP SoC ZCU102 FPGA board,
and the Xilinx SDx IED development tool. The experi-
ment setup is shown in Fig. 5. The X-ray images used
for this evaluation are a combination of two data sets from
[11], and [14], and are categorized into two classes nor-
mal, and abnormal. Normal indicates that the patient is
healthy, while abnormal indicates the presence of COVID-
19 related pneumonia. After classification, The average
processing time taken to classify an image is measured to
determine theprocessing speed and then compared to the
time taken to run on just the FPGA ARM CPU.

4.2 Evaluation Results

For evaluation, we use 5216 training sets and 624 test im-
ages, and the CNN model was trained in grayscale. Sev-
eral image sizes were used to improve the accuracy of the
adopted CNN model, and the results are summarized in

SHS Web of Conferences 102, 04019 (2021)
ETLTC2021

https://doi.org/10.1051/shsconf/202110204019

=y (T Execution
SD cord . en ~

The Zynq Ulua Scale=
MP SoC ZCU102

FPGA board

LAN PORT

Figure 5. Setup for hardware acceleration experiment.

Table 3. Prediction accuracy over various image sizes

Input size | Test Accuracy
32 x32 0.8958
64 x 64 0.9327
128 x 128 0.9279
256 x 256 0.9103

Table 4. Prediction accuracy over various image sizes

Onboard ARM CPU
Implementation time

Without opt.
771.82

With opt.
429.012

Table. 3. From the results, It can be seen that increas-
ing the size of the image used did not yield any increase
in inaccuracy. However, because the CNN model was not
complex, the accuracy came out best with an image size of
64x64. Another technique that was employed to improve
accuracy is dropouts placement, which attempted dropout
after the last pooling and then after each pooling. As a re-
sult, overshooting problems during learning were reduced.
However, there was no difference in test accuracy.

The processing time achieved from our applied accel-
erated approach which merges function combination, use
of buffer, and Unroll is described in Table. 2. in this ta-
ble, we can see that convolution alone takes up 98% of
the time while pooling and forward takes up 2%. When
compared to the un-optimized implementation on FPGA
ARM host processor as described in Table. 4, the acceler-
ated CNN shows 32.57% improvement. However, the per-
formance obtained from the optimized FPGA ARM host
processor is yet to be attained. For the hardware com-
plexity of the fully connected network on the ZCU-102
FPGA 9.7% of the LUT, 1.6% of the DSP48, 2.2% FF,
and approximately 4.8% 18k BRAM was utilized. In stor-
ing the weights, biases, and input features in the format of
a single-precision floating-point, BRAM of 731Bytes in
total (651-Byte weights + 5-Byte biases + 75-Byte inputs)

was utilized. We conclude that the hardware complexity
of the system is small as it occupies only a fraction of the
available FPGA resources.

5 Discussion

The hardware acceleration of the AIRBiS CNN has been
described in previous sections. However, some issues need
to be addressed to obtain better diagnostic speed. Creating
a model in RGB may be a way to obtain better perfor-
mance since features can be extracted better in RGB than
in grayscale. However, because the images we are using
are X-ray images, we created a CNN model in grayscale
with the assumption that RGB would not make much dif-
ference. Based on FPGA usage, there is still room for
improvement in FPGA. So we would like to continue to
develop hardware that exceeds the diagnostic speed of the
FPGA ARM host processor, further improving the diag-
nostic speed by focusing on the data transfer method in
terms of the yet untested CNN functions to improve the
diagnostic speed.

6 Conclusion

In this study, we investigated the use of FPGAs to improve
the speed of diagnosis of the AIRBiS CNN. In the data
transfer method, from random access to bulk access, place-
ment of buffers in schematized functions, and a combina-
tion of several features to reduce data access to increase
the diagnostic speed. For computational processing, the
use of pipeline processing and parallel processing compi-
lation options to increase diagnostic speed. The goal of in-
creasing diagnostic speed could be achieved by optimizing
the above. However, the achieved diagnostic speed could
not exceed the diagnostic speed on the the host processor,
although the difference in diagnostic speed per piece could
be reduced.

References

[1] Rui Han, Lu Huang, Hong Jiang, Jin Dong, Hongfen
Peng, and Dongyou Zhang. Early clinical and CT
manifestations of coronavirus disease 2019 (COVID-
19) pneumonia. American Journal of Roentgenology,
215(2):338-343, August 2020.

[2] World Health Organization. Who coronavirus dis-
ease (covid-19) dashboard, 2020.

[3] Yunpeng Ji, Zhongren Ma, Maikel P Peppelenbosch,
and Qiuwei Pan. Potential association between
COVID-19 mortality and health-care resource avail-
ability. The Lancet Global Health, 8(4):e480, April
2020.

[4] Abderazek Ben Abdallah, Huankun Huang,
Nam Khanh Dang, and Jiangning Song. Ai pro-
cessor, Nov. 2020. Japanese Patent Application
Laid-Open No 2020-194733.

[5] Babak Ehteshami Bejnordi, Mitko Veta, Paul Jo-
hannes van Diest, Bram van Ginneken, Nico Karsse-
meijer, Geert Litjens, Jeroen A. W. M. van der Laak, ,

SHS Web of Conferences 102, 04019 (2021)

ETLTC2021

https://doi.org/10.1051/shsconf/202110204019

[9]

and the CAMELYON16 Consortium. Diagnostic As-
sessment of Deep Learning Algorithms for Detection
of Lymph Node Metastases in Women With Breast
Cancer. JAMA, 318(22):2199-2210, 2017.

Paras Lakhani and Baskaran Sundaram. Deep learn-
ing at chest radiography: Automated classification of
pulmonary tuberculosis by using convolutional neu-
ral networks. Radiology, 284(2):574-582, August
2017.

Andre Esteva, Brett Kuprel, Roberto A. Novoa,
Justin Ko, Susan M. Swetter, Helen M. Blau, and
Sebastian Thrun. Dermatologist-level classification
of skin cancer with deep neural networks. Nature,
542(7639):115-118, January 2017.

J. Wang, Y. Bao, Y. Wen, H. Lu, H. Luo, Y. Xiang,
X. Li, C. Liu, and D. Qian. Prior-attention residual
learning for more discriminative covid-19 screening
in ct images. IEEE Transactions on Medical Imag-
ing, 39(8):2572-2583, 2020.

X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma,
W. Liu, and C. Zheng. A weakly-supervised frame-
work for covid-19 classification and lesion localiza-
tion from chest ct. IEEE Transactions on Medical

(10]

(11]

(12]

[13]

[14]

Imaging, 39(8):2615-2625, 2020.

L. Meng, D. Dong, L. Li, M. Niu, Y. Bai, M. Wang,
X. Qiu, Y. Zha, and J. Tian. A deep learning prog-
nosis model help alert for covid-19 patients at high-
risk of death: A multi-center study. IEEE Journal
of Biomedical and Health Informatics, 24(12):3576—
3584, 2020.

Paul Mooney. Chest X-Ray Images (Pneumonia).
https://www.kaggle.com/paultimothymooney/chest-
xray-pneumonia, 2020.

Hidemi Isihara. In An Introduction to FPGAs for
Software Engineers, pages 96—165, 2017.

Tong Geng, Tianqi Wang, Ahmed Sanaullah, Chen
Yang, Rui Xu, Rushi Patel, and Martin Herbordt.
Acceleration and load balancing of cnn training on
fpga clusters. In 2018 IEEE 26th Annual Interna-
tional Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2018.

Joseph Paul Cohen, Paul Morrison, Lan Dao,
Karsten Roth, Tim Q Duong, and Marzyeh Ghas-
semi. Covid-19 image data collection: Prospective
predictions are the future, 2020.

