Digital Transformation of Design Education in Chinese Universities: Trends, Challenges, and Opportunities

Yaolei Lyu 1*, Tianjie Chi1, and Xinjiang Zheng1
1Art and Design Department, 311599, Zhejiang Gongshang University Hangzhou College of Commerce, China

Abstract. With the rapid development of digital technology, the field of higher education in China is actively exploring how to fully integrate this powerful tool to improve the quality of design education. This article aims to provide a comprehensive review and analysis of the current state, future trends, and challenges faced by digital exploration in design education in Chinese universities, in order to present a complete picture of the new developments in the field of education. This field is undergoing a revolutionary transformation, and we will delve deep into this process, hoping to provide useful insights for university education reform and the integration of digital technology.

1 Introduction

With the rapid advancement of digital technology, design education in Chinese universities is at the forefront of a significant transformation. This article provides a comprehensive overview of the current landscape, future trends, and challenges in the integration of digital technologies in design education within these institutions. We discuss the pivotal role of emerging digital tools, such as Virtual Reality (VR) and Augmented Reality (AR), in revolutionizing teaching methodologies and enhancing the creative process[1-3]. The development and implementation of robust digital platforms, the evolution of faculty capabilities, and the promotion of active student engagement are critically analyzed. Additionally, we explore the potential of online collaboration and remote learning as mechanisms for creating a more inclusive and flexible educational system. Our aim is to present a holistic view of the opportunities and challenges presented by digital technology in design education, and to propose strategic approaches for its effective integration. This article contributes to the dialogue on advancing design education in the digital age, providing insights for educators, students, and policy-makers.

2 Emergence of Digital Technologies in Design Education in Universities

In the vast landscape of the digital era, the metamorphosis of design education in Chinese institutions is not just evident but transformative. Drawing from decades of observation and engagement with the academic community, one can discern the pivotal shifts that have redefined the contours of design pedagogy in China.

2.1 Rapid Development of Digital Technologies

With the rapid progress of information technology, the development of digital technology is changing with each passing day. The field of university design education has benefited from this trend, with continuous innovations in computer software and hardware providing numerous tools and resources for education. From advanced drawing software to 3D modeling tools, digital technology has become an integral part of design education. The growing maturity of Virtual Reality (VR) and Augmented Reality (AR) technologies offers new opportunities for university design education[3]. Students can immerse themselves in the creative design process through virtual reality, observe the three-dimensional effects of models, and gain a better understanding of design principles. Augmented reality technology can blend virtual elements into the real environment, providing interactive learning opportunities for students to delve deeper into design concepts. The swift development of digital technology not only furnishes new teaching tools for design education but also creates abundant practical opportunities for students. Students can collaborate on projects through online platforms, conduct research in virtual labs, and showcase their creative works through digital media. This development is anticipated to enhance the effectiveness of university design education, aiding students in better adapting to the demands of the design industry and propelling innovation and progress in design education.

2.2 Importance of Design Education

Design education has long played a pivotal role in cultivating innovative thinking and problem-solving...
skills. In today's globally competitive market, the value of university design education is increasingly evident. Design majors not only foster students' aesthetic sensibilities but also emphasize the significance of creative and critical thinking, enabling students to adeptly navigate the rapidly evolving professional landscape[4]. The growing demand for designers in contemporary society necessitates that students possess both artistic creativity and the ability to harness digital technology to realize their future aspirations. The flourishing development of digital technology opens up a wealth of opportunities for university design education, assisting students in better comprehending and utilizing technology to support their design endeavors. Through digital tools, students can effortlessly create, modify, and exhibit design projects, immerse themselves in digital workflows, and meet the evolving requirements of the industry.

2.3 Integration of Digital Technology and Design Education

The fusion of digital technology and design education is an eye-catching trend that is affecting design education in higher education institutions in multiple ways. This trend not only includes the use of digital tools in classroom teaching but extends to the overall educational ecosystem of design schools and universities, involving curriculum design, development of learning resources, and digital display of student works among various dimensions. Digital technology provides more opportunities for students to engage in learning. Through virtual laboratories, online design tools, and digital simulation software, students can engage in more practical and innovative activities without being constrained by time and place. They can design, modify, and showcase their works in a virtual environment, actively participate in collaborative projects, and receive real-time feedback. This mode of learning promotes self-directed learning and problem-solving ability cultivation, enabling students to better adapt to the demands of the modern design field. Digital technology provides more teaching tools and resources for educators. Virtual teaching platforms, online course design tools, and digitalized teaching materials enable educators to flexibly organize teaching content and provide personalized guidance to students. Interactive courses, online discussion boards, and digital assessment tools can be created to provide targeted feedback and support, better meeting the diversified learning needs of students, stimulating their interest in learning, and promoting deeper learning. The integration of digital technology and design education will lead the future development direction of design education in higher education institutions. This trend will create more opportunities, improve the quality of education, and cultivate more design talents with innovative abilities. The continuous evolution of digital technology will constantly enrich the content and forms of design education, pushing students to achieve greater success in design practice in the digital era. Higher education institutions and design schools will need to actively embrace this digital transformation to better meet the actual development needs of students and promote the sustainable development of design education. This digital era presents unprecedented opportunities, challenges, and responsibilities for design education in higher education institutions.

3 Challenges in Digital Education

3.1 Construction of Education Platforms

In the realm of higher education design education, the rapid development of digital technology brings about brand new opportunities and challenges. Among them, the construction of educational platforms becomes a critical challenge as it not only affects the quality of education but also directly relates to the learning experience of students. Creating a robust digital educational platform requires reliable technical infrastructure, including high-speed internet connections, servers, and data storage devices. Higher education institutions need to invest significant resources to ensure the availability and performance of these infrastructures[5]. The characteristic of design education in higher education is its diversity, requiring different types of tools and resources to support creativity, design, and practice. Digital platforms must be able to provide a variety of tools, such as virtual design software, 3D modeling tools, and online collaboration platforms to meet the needs of different courses and projects. The educational platform must be user-friendly, not only for teachers but also for students, as user-friendliness is key to improving platform adoption rates, necessitating considerations of user experience, interface design, and training programs. Higher education institutions need to manage a vast amount of digital education content, including textbooks, course designs, student works, etc., requiring a robust content management system capable of organizing, storing, and retrieving these contents. Digital platforms must ensure the data privacy of students and teachers is adequately protected, adopting necessary security measures to prevent data leakage or abuse. The construction and maintenance of digital platforms require substantial investment, and higher education institutions need to consider cost, sustainability, and return on investment to ensure the long-term success of digital education.

3.2 Faculty Development

Faculty development becomes a complex and crucial challenge in the context of digital education, as the success or failure of digitalization in higher education design education largely depends on the digital teaching capabilities of the faculty. However, cultivating a faculty team in this regard faces challenges. Many traditional educators are not very familiar with digital tools and online teaching platforms and need training to master the use of these tools, which requires time and resources. Educators need to learn how to effectively impart knowledge in an online environment, promote interaction and engagement, and address best practices
in online education, including how to construct online courses, manage student interaction, and provide timely feedback. Assessing student progress in a digital environment also presents a challenge, and educators need to learn how to effectively evaluate student assignments and engagement, while providing targeted feedback to foster student learning and progress. The workload of educators may increase, as online teaching typically requires more time for preparation and management, necessitating adaptation to new time management strategies to ensure high-quality online education. Faculty development also needs to encourage educators to try new teaching methods and digital tools, requiring an innovative culture and support to enable educators to explore new educational domains.

3.3 Student Engagement and Technological Literacy

Student engagement and technological literacy are crucial in the digital transformation of higher education design education, yet they come with a series of challenges. Students come from diverse backgrounds; some students have more digital experience while others might face a digital divide. In digital education, ensuring that each student has an equal opportunity to participate is a significant challenge. According to recent survey data, it's concerning that although digital technology is widely used in urban areas of China, in remote and rural areas, the level of digital literacy among students is generally lower, and the opportunities to access digital learning resources are limited. This necessitates universities to consider how to bridge the digital divide in their digital transformation to ensure that each student can equally benefit from digital education.

Students need appropriate technological devices and reliable internet access to engage in online learning, and not every student can easily obtain these resources, affecting their learning experience. For instance, in one survey, over 30% of students reported encountering technical issues in digital learning, such as unstable network connections or device malfunctions. Universities need to provide support to address these technical issues to ensure that students can smoothly participate in digital learning.

Although the younger generation is generally adept at using technology, they might not possess skills related to digital learning, such as information searching, online collaboration, and digital creativity. Enhancing their digital literacy requires certain training. In fact, less than half of the university students reported feeling confident in their digital skills. Universities need to provide relevant training and resources to help students improve their digital literacy.

Table 1. The digital transformation process of design education

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Develop digital content</td>
</tr>
<tr>
<td>Design</td>
<td>Build digital prototype</td>
</tr>
<tr>
<td>Faculty</td>
<td>Introduce digital technology</td>
</tr>
<tr>
<td>Traditional</td>
<td></td>
</tr>
</tbody>
</table>

4 Potential Digital Education Trends

4.1 Application of Virtual Reality (VR) and Augmented Reality (AR) in Design Education

4.1.1 Establishment of Virtual Laboratories

Virtual laboratories in higher education institutions can be seen as digital immersive learning environments, providing students with opportunities to simulate real-world design challenges. Students can encounter various design projects within virtual laboratories, spanning architecture, industrial design, digital media production, among other fields. They can propose their creative ideas, design prototypes, and conduct testing, much like in the real world. This practicality aids in translating theoretical knowledge into practical skills, preparing students for future career development. Virtual laboratories offer a safe testing ground where students can try new design methods in a risk-free environment, engage in trial and error, and accumulate experience without worrying about damaging expensive equipment or materials. Virtual laboratories contribute to efficient resource management, allowing schools to reduce material waste, improve energy efficiency, and lower costs through digital simulation, aiding in the realization of sustainable education and imparting the important concept of sustainable design to students. A significant advantage of virtual laboratories is that they can attract students and educators from around the world for collaboration. Through online collaboration, students can collectively address global design issues, share perspectives from different cultures and backgrounds, laying the groundwork for cross-cultural design.

4.1.2 Development of AR Applications and Courses

Universities can actively develop applications based on augmented reality (AR) for design education. AR technology can stimulate students' innovative thinking, encouraging them to merge virtual elements with the real world, creating astonishing designs. By offering AR-related courses, students can learn how to develop applications using this technology, thereby possessing innovative capabilities in their future careers. AR
applications provide real-time visual feedback of the elements designed by students in a real-world environment, helping students better understand the performance of their designs in practical applications and make timely improvements, thereby enhancing the efficiency and quality of the design process. AR applications and courses often span multiple fields, including design, computer science, and engineering, encouraging interdisciplinary collaboration. Students can work with peers from different fields, sharing knowledge and creativity, enriching their learning experiences. AR applications and courses can cover various practical cases, such as architectural design, interior design, and product design, enabling students to directly apply skills to real projects, laying a solid foundation for their future career development[2,5,6]. These technologies offer students a more immersive learning experience and have the potential to completely transform the way design education is delivered. For instance, in an architectural design course at a certain university, students can use virtual reality headsets to enter a virtual architectural scene, as if they were in a real building. They can freely roam, observe architectural details, and adjust design elements. This interactive experience allows them to understand architectural design principles more deeply. Through such immersive experiences, the boundary between theoretical knowledge and practical application blurs, providing a more engaging and effective learning environment that prepares students for real-world design challenges they will face in their professional lives.

Fig. 1. The Imaginary Image of Digital Technology Application in Design Teaching.

4.2 Online Collaboration and Remote Learning

4.2.1 Online Team Projects

The implementation of online team projects requires specific practices and plans to ensure students can effectively collaborate across geographical constraints. Universities need to clearly define the goals and task requirements of online team projects, including project themes, timelines, deliverables, and evaluation criteria. Clear project objectives help students understand what they need to achieve, thereby collaborating more purposefully. Both students and educators need training to proficiently use online collaboration tools, such as video conferencing, project management software, and file-sharing platforms. This training helps improve students' digital literacy, enabling them to collaborate effectively with team members. Schools can assist students in forming teams, matching team members based on students' interests, skills, and project needs. Additionally, schools can provide guidance, teaching students how to communicate effectively online, including written and verbal communication skills.

4.2.2 Remote Mentoring

Hiring remote mentors to provide online guidance and feedback is crucial for university students concerning their academic performance and career development. Universities can create a database containing potential remote mentors' information, including their areas of expertise, work experience, and contact information, aiding in better matching students with suitable mentors. Students can discuss their academic and career goals with advising professors and choose appropriate remote mentors from the database, with the matching process emphasizing students' needs and the mentors' areas of expertise. Schools can provide online meeting platforms, enabling students to have face-to-face virtual meetings with remote mentors, facilitating deeper discussion of issues and real-time feedback. Students and remote mentors can jointly develop academic plans, including elective courses, research projects, academic objectives, etc., ensuring personalized academic guidance and targeted support for students' needs. This way, students can receive a more tailored guidance, and broaden their perspectives by interacting with professionals and academics from diverse backgrounds, preparing them for the collaborative and global nature of modern design practice.

4.2.3 Open Online Courses

Universities can ensure that open online courses offer multilingual support to attract international students, including providing subtitles, translation services, and multilingual materials to lower language barriers. Open online courses should encompass globalized course content, covering design practices and perspectives from different cultures and regions, stimulating students' interest in diverse cultures. The courses can foster cross-cultural interactions among students, for instance through online forums, collaborative projects, and virtual team collaborations, encouraging students to share knowledge and perspectives, promoting international exchange and cooperation. Schools can provide internationally recognized certificates or credits for students who complete open online courses, as an incentive for more international students to participate. Especially during the pandemic, remote learning has become a vital avenue for continuing education. Students and educators maintain contact through video
conferences, online classes, and remote collaboration tools, continuing with design projects and courses, providing flexibility in education and helping to maintain the continuity of teaching. Feedback from students and teachers indicates that online collaboration and remote learning are not only suitable for special circumstances but can also be a part of regular education. Students appreciate the increased flexibility in managing their own time, while educators find that online collaboration tools help enhance teaching efficiency. This suggests that, despite the challenges, the trend of applying online collaboration and remote learning in higher education design education is positive and is expected to continue driving educational innovation in the future.

The trend reflects a shift towards a more accessible and flexible education model, which not only accommodates the current need for social distancing but also addresses the increasing globalization of education. By providing an inclusive learning environment that transcends geographical and linguistic barriers, open online courses, online collaboration, and remote learning are paving the way for a more global and interconnected educational experience, fostering a broader understanding and appreciation of diverse design practices and cultural perspectives.

4.3 Data Analysis and Personalized Learning

4.3.1 Investment in Learning Analytics Tools

Universities should conduct a comprehensive needs analysis, including discussions with faculty and students, to clarify students’ expectations and needs for learning analytics tools. This helps ensure that the selected tools meet the actual needs of the school. Universities can conduct market research to explore available learning analytics tools in the market, covering both commercial products and open-source software. Students can compare with other schools to understand the tools used in digital education and their effectiveness. Ensuring the chosen tools are compatible with the school’s technical infrastructure implies that the tools should integrate with the school’s student information system, online learning platforms, and other educational technologies, necessitating the involvement of the technical team to ensure seamless integration. Universities need to assess their available budget to determine which type of learning analytics tools they can purchase. Commercial products usually require the purchase of licenses, while open-source software may entail additional development and maintenance costs. Before making decisions, universities can select some of the most promising tools for trial and evaluation, including collaborating with vendors or developers to obtain trial licenses or demo versions. During the trial phase, faculty and students can provide feedback to determine which tool best meets their needs. Once the evaluation is completed, universities can make the final choice, purchase the selected learning analytics tools, usually involving signing contracts with suppliers, determining prices, and support arrangements[7].

The school’s information technology team should conduct a technical assessment to determine how best to integrate learning analytics tools, considering technical requirements such as hardware and software compatibility, and whether it matches the school’s existing systems. In some cases, schools may need to do some custom development to ensure seamless integration of the tool with its systems, including writing custom API(Application Programming Interfaces) or plugins to achieve the desired functionality and data sharing. Schools need to ensure that learning analytics tools can synchronize with student information systems, allowing the school to access students' basic information, course registration, and grade data for analysis and personalized learning.

4.3.2 Personalized Course Design

Schools can conduct academic assessments, including entrance exams or subject tests, to determine each student’s academic level. Based on the assessment results, schools can grade students to ensure they enter courses suitable for their level. Schools can work with each student to develop personalized learning plans, including selecting appropriate courses for each student, setting learning objectives and timetables, and providing personalized learning resources and support. For students at different levels, schools can provide different levels of textbooks and course content, ensuring that each student learns at a level suitable for them, avoiding learning being too easy or too difficult. Schools can provide students with opportunities to choose different learning paths, select majors or fields of interest without being constrained by a fixed course structure, encouraging students to learn according to their interests and career goals.

4.3.3 Real-Time Feedback Mechanism

A comprehensive needs analysis should be conducted by universities, including discussions with faculty and students, to clarify their expectations and needs for learning analytics tools. This helps ensure that the selected tools meet the actual needs of the school. Universities can conduct market research to explore available learning analytics tools in the market, covering both commercial products and open-source software, comparing with other schools to understand the tools used in digital education and their effectiveness. Ensuring the chosen tools are compatible with the school’s technical infrastructure means the tools should integrate with the school’s student information system, online learning platforms, and other educational technologies, necessitating the involvement of the technical team to ensure seamless integration[6]. Universities need to assess their available budget to determine which type of learning analytics tools they can purchase. Commercial products usually require the purchase of licenses, while open-source software may entail additional development and maintenance costs. Before making decisions, universities can select some of the most promising tools for trial and evaluation,
including collaborating with vendors or developers to obtain trial licenses or demo versions. During the trial phase, faculty and students can provide feedback to determine which tool best meets their needs.

4.3.4 Detailing Specific Segments

Educators can customize learning paths for each student based on their academic level and subject interest. Different students can learn at different speeds and difficulty levels, ensuring that each student can make progress under suitable conditions. By monitoring students’ academic performance, data analysis can provide real-time feedback and recommendations[8-10]. If a student encounters difficulty on a specific topic, the system can send alerts and provide recommendations in a timely manner to help students overcome problems. Based on students’ subject preferences and needs, schools can recommend specific learning resources to students, such as online courses, textbooks, and learning tools, helping students more easily find suitable learning resources and improve learning efficiency. Through data analysis, students can better understand their learning progress and needs, use learning analytics tools to manage their learning process, set learning objectives, and track their progress.

5 Conclusion

This article's exploration into the digital transformation of design education in Chinese universities reveals a complex landscape filled with both opportunities and challenges. As digital technology continues to evolve at a rapid pace, it becomes imperative for educational institutions to strategically integrate these advancements into their curriculum and pedagogy. Addressing the digital divide, enhancing digital literacy, and promoting an inclusive learning environment are key to ensuring the success of this transformation. The future of design education lies in the effective use of digital tools like VR, AR, and data analytics, which are essential in providing a comprehensive and dynamic educational experience. Embracing digital transformation requires continuous innovation, adaptation, and collaboration among educators, students, and institutions. By doing so, Chinese universities can prepare a new generation of design professionals who are well-equipped to navigate the complexities of a digitally-oriented world. This collective journey towards digital integration will shape a future educational paradigm that is dynamic, interconnected, and reflective of the evolving design profession.

References

7. "Digital transformation in higher education: critiquing the five-year development plans (2016-2020) of 75 Chinese universities," ResearchGate
9. Yang, Z. Digitization will bring unlimited potential and a new vision for education, and the digitization of education is a historical process and an inevitable trend of education reform,(2021)
10. Menendez et al. The digitalization of learning and teaching practices in higher education institutions as a process of technological and organizational changes, (2016)