Risk Management in Derivatives Markets: Integrating Advanced Hedging Strategies with Empirical Analysis

Fengshuo Liu1,*

1College of Information Science and Engineering/College of Artificial Intelligence, China University of Petroleum (Beijing), Chengbei Street, Beijing, 102249, China

Abstract. This study provides a comprehensive analysis of hedging strategies in the Chinese 50ETF options market, emphasizing dynamic hedging, Value at Risk (VaR), and machine learning-based approaches. Each strategy is meticulously evaluated against various market conditions, revealing distinct strengths and weaknesses. Dynamic hedging proves cost-effective in stable markets but struggles in high volatility scenarios, limiting its risk reduction capacity. Conversely, the VaR model, while reducing risk effectively under extreme conditions, may lead to over-hedging in calmer markets due to high costs and dependence on historical data. Machine learning strategies excel in adapting to complex and nonlinear market dynamics, though their effectiveness is contingent on data accuracy and model robustness. The study highlights the criticality of aligning strategies with market specifics and investor risk profiles, advocating for adaptable risk management in the fluctuating realm of financial derivatives. It provides empirical insights into modern hedging methods, offering practical guidance for their application in dynamic financial markets.

1 Introduction

1.1 Research background

Under the influence of globalization and technological advancement, financial markets are fraught with complexity and uncertainty, undergoing unprecedented transformations. In an uncertain financial environment, risk management becomes crucial for optimizing portfolio management [1]. The Chinese 50ETF options market, as a typical emerging market, has rapid growth and high volatility, highlighting the importance of efficient risk management strategies. In recent years, this market has shown significant growth and diversification trends, including surges in trading volume, diversification of participants, and increasing complexity of market structures. These changes bring substantial business opportunities and significantly increase market risks, especially for derivatives, a highly leveraged financial instrument. Traditional risk management and hedging strategies are severely challenged when faced with such market conditions. This study explores and evaluates advanced hedging strategies suitable for such markets, like dynamic hedging, VaR-based risk management, and strategies incorporating the latest machine learning technologies. Discussion and implementation of these methods are crucial for understanding and controlling the complexity of the derivatives market, offering vital theoretical and practical support for the stability and sustainable development of financial markets.

These hedging strategies hold significant commercial value, as they can improve market efficiency and transparency, reduce systemic risks, and have notable social value. They help protect investor interests and promote the stable development of financial markets. Moreover, with the ongoing evolution of global financial markets, particularly the rise of new areas like cryptocurrencies, the hedging strategies explored in this study have significant practical significance for the current market and offer a forward-looking perspective for addressing future market uncertainties and risks. Therefore, this research focuses on solving current issues and future financial market trends, carrying profound significance.

1.2 Literature review

Rao delved deeply into the key role of financial derivatives (such as futures, options, and swaps) in risk management [2]. He highlighted that the proper use of these tools could effectively manage risks, reduce costs, and enhance returns. He also emphasized understanding the complexity of these derivative instruments in practical operation, providing a theoretical reference for analyzing hedging strategies and evaluating their adaptability and effectiveness under different market conditions.

Sajjad et al. thoroughly investigated the application of derivatives in Pakistan’s financial service industry, especially in hedging systemic and non-systemic risks [3]. They introduced the basics of derivatives and...
analyzed their practical market applications, offering an international perspective. This is crucial for understanding and comparing the applicability and effectiveness of derivative hedging strategies in different market environments. Particularly for the Chinese 50ETF options market focused on in this paper, their study provides insights into the implementation of hedging strategies under different market backgrounds, aiding in the global context evaluation and refinement of the research.

Arenas-Falótico and Scudiero explored the historical development, standardization elements, and role in risk management of futures contracts [4]. Their research provided a detailed theoretical background for understanding how futures contracts are effective risk management tools. This supports the dynamic hedging and VaR models discussed in this paper, especially in analyzing the effectiveness and limitations of futures contracts as hedging tools. Their in-depth analysis aids in understanding and evaluating the potential advantages and risks of applying these hedging tools in the Chinese 50ETF options market.

Cao et al. explored new gamma and vega hedging methods in financial markets using deep learning technology [5]. They introduced advanced distributed reinforcement learning algorithms, providing theoretical and practical bases for incorporating machine learning into hedging strategies. This is highly relevant to the machine learning-based hedging strategies discussed in this paper, especially when studying their application in the Chinese 50ETF options market. Their research proves the feasibility of using high-tech hedging strategies and provides theoretical support and empirical basis for exploring similar high-tech methods in this paper.

Zhang and Yin studied the hedging strategies of stock index futures in the Chinese market, particularly in ambiguity aversion [6]. Their empirical data and strategy analysis offer an in-depth perspective for understanding and applying hedging strategies. They provide a valuable reference for studying hedging strategies in the Chinese 50ETF options market, especially when considering market participants’ attitudes toward risk and behavioral responses. Their empirical approach and focus on the Chinese market provide important region-specific perspectives and empirical support for this paper.

1.3 Research framework

The framework of this study focuses on exploring in-depth risk management strategies for the Chinese 50ETF options market. Firstly, this paper will systematically review the theoretical basis of market risk management, particularly dynamic hedging strategies, VaR models, and machine learning-based methods, analyzing their application and limitations in current literature. Secondly, this study will employ empirical analysis methods, collecting and analyzing market data to assess the performance of different risk management strategies in reducing market risks, cost-effectiveness, and execution efficiency. Additionally, the impact of market changes on the effectiveness of these strategies will be considered, comparing the adaptability and effectiveness of different strategies under various market conditions. Finally, this study proposes optimized and customized risk management strategy recommendations based on market conditions and investors’ risk preferences, promoting a close integration of theory and practice. The research results will aid in understanding the practical challenges of current market risk management and provide significant theoretical and practical guidance for strategy optimization and future research in financial markets.

2 Market analysis and hedging strategy formulation

2.1 Data collection and preprocessing

This study extracted relevant Chinese 50ETF options market data from the Tonghuashun iFinD financial data terminal. The dataset covers trading information from January 2022 to March 2023, focusing on 18 option products over 164 trading days for in-depth analysis. As one of China’s most active options trading markets, the 50ETF options market, with its high liquidity and significant volatility, provides an ideal experimental basis for constructing hedging strategies, enhancing their practical application and adaptability.

After importing the data, the initial steps included data cleansing—removing rows with missing values and duplicate records—and standardizing the dataset to ensure consistency across different variables. Subsequently, the study calculated the logarithmic returns of each option, an essential indicator for measuring market volatility. To eliminate non-stationarity in the data, first-order differencing was performed. Finally, short-term, medium-term, and long-term moving averages were calculated to effectively identify market price trends, providing crucial technical reference for subsequent hedging strategy formulation.

2.2 Market characteristic analysis

The study used the standard deviation of logarithmic returns to estimate the market’s historical volatility. Assuming 252 trading days per year, the calculated historical volatility was 14.38%. This rate reflects the level of market volatility during the study period. Notably, higher volatility often suggests higher risks but offers investors higher potential returns. This market characteristic is crucial for options traders, as it directly impacts the formulation of trading strategies and risk management.
As shown in Figure 1, the market volatility analysis indicated that most logarithmic returns during the selected period were concentrated near zero, suggesting relative market stability with a low frequency of extreme returns. The distribution of returns, approximating a normal distribution with a peak near the center, indicates frequent small fluctuations in the market. However, the thicker tails on both sides of the distribution suggest a higher likelihood of extreme market movements compared to a normal distribution.

Moreover, the study utilized moving averages to analyze price trends. Moving averages, calculated by assigning equal or predefined weights to time series data, summarize the overall patterns of time series over a given period and forecast trends [7]. This paper selected 20-day, 50-day, and 100-day windows to represent short-term, medium-term, and long-term trends. Analysis revealed that market prices showed variable trends at different timescales, sometimes upward, sometimes downward, and at times remaining flat, indicating the market’s high complexity and the need for flexible hedging strategies, as shown in Figure 2.

Moving averages showed a smoothed trend of market prices. Short-term MAs indicated more frequent fluctuations, while long-term MAs showed a steadier trend. Price trend analysis is invaluable in determining market entry and exit points and is crucial for formulating dynamic hedging strategies.

2.3 Establishment and simulation of hedging strategies

Dynamic Hedging: Delta dynamic hedging, or delta-neutral hedging, involves constructing a delta-neutral portfolio and continually adjusting its composition over time or as asset prices change to maintain a portfolio delta of zero [8]. This paper used the Black-Scholes option pricing model to calculate the Delta value of options, assuming a risk-free rate of 0.01. Hedging was conducted daily, recording hedging costs and cumulative hedging expenses.

Value at Risk (VaR): A historical simulation-based VaR model was established. VaR represents the maximum expected loss of a financial asset or portfolio over a given confidence level and time period [9]. The model calculates the maximum potential loss at a given confidence level based on the distribution of historical logarithmic returns. This paper used a 95% confidence level, implying a 5% probability that actual losses would exceed the VaR value. The number of times the VaR was exceeded, and the cumulative excess loss over VaR was recorded.
Machine Learning Hedging: Used machine learning technology to predict market movements and formulate corresponding hedging strategies. The study applied the ARIMA (Autoregressive Integrated Moving Average) model for time series forecasting of differenced data. An ARIMA model is labeled as an ARIMA (p, d, q) model, where p represents the number of autoregressive terms, d is the number of differences, and q is the number of moving averages [10]. The model parameters used here were (5,1,2), indicating a fifth-order autoregressive, first-order difference, and second-order moving average. The data was divided into an 80% training set and a 20% test set, with the model fitted using the training set and predictions made using the test set. Prediction errors and accuracy were recorded.

Strategy Simulation: The study simulated these strategies on historical data, recording and comparing metrics such as hedging costs, risk reduction, and efficiency. It assumed a fixed hedging cost of 100 units per hedge, defined risk reduction as either the maximum single-day loss avoided or the product of prediction accuracy and total actual losses, and efficiency as the ratio of risk reduction to hedging costs.

3 Empirical analysis

Table 1. The results of running the Delta hedging strategy

<table>
<thead>
<tr>
<th>Total Hedging Cost</th>
<th>Average Daily Hedging Cost</th>
<th>Max Single-Day Loss</th>
<th>Estimated Risk Reduction</th>
<th>Hedging Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1563.2822418670517</td>
<td>0.03249053812463996</td>
<td>-0.4531493071200352</td>
<td>0.4531493071200352</td>
<td>0.00028987043732987854</td>
</tr>
</tbody>
</table>

Table 2. The results of running the VaR strategy

<table>
<thead>
<tr>
<th>Historical VaR (95%)</th>
<th>Number of Exceedances</th>
<th>Estimated Risk Reduction</th>
<th>Estimated Hedging Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01091248730049</td>
<td>2417</td>
<td>4729.532876154398</td>
<td>241700</td>
</tr>
</tbody>
</table>

Table 3. The results of running the ARIMA model strategy-ADF Test on Differenced Series

<table>
<thead>
<tr>
<th>ADF Statistic</th>
<th>p-value</th>
<th>Critical Values 1%</th>
<th>Critical Values 5%</th>
<th>Critical Values 10%</th>
<th>Test MSE</th>
<th>Test MAE</th>
<th>Test MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-16.220511819816352</td>
<td>3.902237590331006e-29</td>
<td>-3.4325899226530077</td>
<td>-2.8625296487669773</td>
<td>-2.5872968177028945</td>
<td>0.002</td>
<td>0.029</td>
<td>107.036%</td>
</tr>
</tbody>
</table>

Table 4. The results of running the ARIMA model strategy-Performance Metrics

<table>
<thead>
<tr>
<th>Hedging Cost</th>
<th>Estimated Risk Reduction</th>
<th>Hedging Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>32400</td>
<td>9.267882711864406</td>
<td>0.0002860457627118644</td>
</tr>
</tbody>
</table>

According to Table 1 to Table 4, this chapter explores the application and effectiveness of different hedging strategies in the Chinese 50ETF options market by analyzing data from four tables and theoretical analysis. The applicability and limitations of dynamic hedging, the Value at Risk (VaR) model, and machine learning hedging strategies are summarized as follows:

Firstly, the dynamic hedging strategy analysis indicates that it has the lowest hedging cost but shows the weakest performance in risk reduction and hedging efficiency. This strategy performs well in markets with lower volatility and smaller price movements. However, in markets with higher volatility and significant price changes, this strategy may struggle to reduce risk effectively and could even lead to substantial losses. Additionally, dynamic hedging requires frequent position adjustments, increasing transaction costs and operational complexity.

Secondly, according to data from Table 2, the Value at Risk (VaR) model incurs the highest hedging cost but excels in risk reduction. It is suitable for markets with high volatility and significant price changes, helping to reduce risk effectively. However, markets with lower volatility and smaller price movements may lead to over-hedging, thereby increasing hedging costs. It’s important to note that the VaR model relies on historical data and may not accurately predict sudden market changes, leading to ineffective or insufficient hedging.

Lastly, the machine learning hedging strategy has higher hedging efficiency than the other two strategies. This strategy applies particularly to markets with high volatility and complex, nonlinear price movements. It can analyze a large amount of data and fully utilize machine learning technology’s powerful fitting and predictive capabilities to capture subtle changes in market dynamics, devising more precise and adaptive hedging plans. However, machine learning hedging also faces several limitations, such as model stability and interpretability, data quality and availability, and the costs and time associated with model training and updates.

Overall, the effectiveness of hedging strategies depends greatly on the specific characteristics of the market conditions. Investors and risk managers need to choose the appropriate strategy based on market characteristics and risk preferences. Understanding the performance and limitations of different hedging strategies under various market conditions is crucial for formulating effective risk management strategies.

4 Results presentation and discussion

4.1 Data visualization

This section presents the performance of different hedging strategies through several key charts based on the data analyzed in previous sections. These charts provide visual evidence of the effectiveness of the strategies, further supporting our empirical analysis.
Figure 3 reveals the cumulative hedging costs of the Delta hedging strategy over the entire study period. The chart shows a nearly linear increase in hedging costs over time. This trend reflects the impact of market volatility, necessitating frequent adjustments in hedging positions, thus leading to cumulative costs. This visualization highlights the potential costs of dynamic hedging in high-volatility markets.

Figure 4 displays the distribution of market log returns and the VaR levels. The VaR level, indicated by the red dashed line, highlights the boundary of predicted losses by the model. The portion exceeding the red line represents actual losses exceeding the VaR model’s predictions, showcasing the extreme loss events beyond the VaR level the model fails to cover.

Figure 5, through the backtesting results of the ARIMA model, demonstrates the model’s ability to capture market price trends. Although the model’s prediction accuracy is not high in certain periods (especially during periods of significant price fluctuations), it generally simulates market trends well most of the time. This analysis highlights the potential of time series models in market forecasting, indicating the need for further parameter adjustments and more complex models to improve prediction accuracy.
Through the analysis of these charts, we can more clearly understand the advantages and limitations of different hedging strategies, providing valuable perspectives for decision-makers. These visual results support our quantitative analysis and guide future hedging strategies and model improvements.

4.2 Strategy evaluation

Based on the analysis conducted earlier, this section evaluates the specific performance and applicability of dynamic hedging, the Value at Risk (VaR) model, and machine learning hedging strategies. These evaluations rely on the existing theoretical framework and a detailed analysis of actual market data, aiming to provide a more comprehensive perspective.

Firstly, although the dynamic hedging strategy shows lower hedging costs in low-volatility markets, its ability to reduce risk is limited in high-volatility markets. This has been validated in practical market applications. Moreover, this strategy requires continuous position adjustments, possibly increasing transaction costs and operational complexity. Therefore, market volatility characteristics must be considered when choosing dynamic hedging. Secondly, the VaR model excels in risk reduction, especially in highly volatile market environments, but its high hedging costs and reliance on historical data may lead to poor hedging effectiveness in some situations. This suggests carefully considering market conditions and applicability is necessary when applying the VaR model. Lastly, the machine learning hedging strategy shows advantages in hedging efficiency, particularly suitable for complex, nonlinear market environments. Nonetheless, the effectiveness of this strategy is limited by model stability and data quality and requires continuous model training and updates. Therefore, constant optimization of the model is necessary in practical applications to adapt to market changes.

In conclusion, each hedging strategy has its applicable scenarios and limitations. Investors and risk managers need to consider specific market characteristics and their risk preferences when choosing hedging strategies. Additionally, as market environments continually evolve, hedging strategies also need ongoing adjustment and optimization to adapt to new market conditions.

5 Conclusion

5.1 Key findings

This study delved into the application and effectiveness of three main hedging strategies in the Chinese 50ETF options market: dynamic hedging, the Value at Risk (VaR) model and machine learning-based hedging strategies. Through comprehensive analysis of these strategies under various market conditions, the study revealed each strategy’s specific advantages and limitations.

The findings indicate that while each strategy has value in specific market environments, their performances vary across different market dynamics. Dynamic hedging shows advantages in low-volatility markets due to its low cost but has limited risk reduction capability in high-volatility environments. The VaR model effectively reduces risk under extreme market conditions but may lead to over-hedging in stable markets due to its high hedging cost and reliance on historical data. Concurrently, machine learning hedging strategies perform well in complex market environments but are limited by the model’s accuracy and data quality. These findings emphasize the need to consider the market’s specific characteristics and investors’ risk preferences when selecting and applying hedging strategies. No single strategy is optimal in all situations; choices and adjustments must be made based on specific market environments and objectives. The conclusions of this study provide valuable perspectives for market participants, aiding them in making more informed decisions in complex and volatile financial environments.

This study offers an empirical basis for understanding and applying different hedging strategies and provides practical guidance for risk managers facing market uncertainties. By thoroughly analyzing and understanding the strengths and limitations of these strategies, investors and risk managers can more effectively manage market risks and achieve more robust investment returns.

5.2 Future research directions

While this study provides a comprehensive assessment of hedging strategies in the Chinese 50ETF options market, many directions merit deeper exploration in the field of hedging strategies, especially against the backdrop of constantly evolving financial markets. Future research could focus on optimizing strategy combinations to adapt to market diversity and uncertainty. This includes finding the optimal balance among dynamic hedging, VaR models, and machine learning strategies and developing new hybrid strategies to better cope with rapid market changes. For instance, strategies could dynamically adjust parameters or weights based on market volatility and trends or use multi-level hedging to address different risk levels and expected returns. Considering trading costs, market impact, liquidity risk, and hedging errors can further refine the evaluation of the effectiveness of hedging strategies.

With the rise of emerging markets, especially areas like cryptocurrencies, exploring the applicability and effectiveness of existing hedging strategies in these markets becomes increasingly important. Future research should assess how these strategies perform against emerging markets’ unique challenges and opportunities and explore how to adjust or develop new strategies to meet these markets’ unique needs. Moreover, considering the potential and limitations of machine learning hedging strategies, future research should focus on applying more advanced data analysis methods and
machine learning models, such as deep learning, reinforcement learning, and ensemble learning, to enhance model prediction and generalization capabilities, thereby improving the accuracy and market adaptability of hedging strategies. Additionally, incorporating more feature variables, such as technical indicators, fundamental factors, and market sentiment, can enhance the models’ input information and interpretability. Furthermore, understanding the impact of evolving regulatory policies and market structures on the effectiveness of hedging strategies is equally important. Future studies should focus on the influence of regulatory framework changes, market participant behaviors, and market structure adjustments on the choice and implementation of hedging strategies to better adapt to market environments and formulate effective risk management strategies.

In summary, future research will continue to explore how to achieve effective risk management amidst the complexity and uncertainty of financial markets. By continually adapting to market evolutions and leveraging emerging technologies, more advanced and comprehensive solutions for risk management can be developed, thereby promoting the stability and healthy development of financial markets.

References

8. C. Ziying. Research and Optimization of Gold Option Hedging Strategies Based on Dynamic Delta Hedging (Master’s Thesis, Shanghai University)