Open Access
SHS Web of Conferences
Volume 14, 2015
ICITCE 2014 – International Conference on Information Technology and Career Education
Article Number 01002
Number of page(s) 5
Section Career Education
Published online 07 January 2015
  1. C.D. Manning, P. Raghavan & H. Schutze. Introduction to Information Retrieva [M]. England: Cambridge University Press, 2008.
  2. J.B. Schafe, L.J. Konstan & J. Ried. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001, 5(1–2):115–153. [CrossRef]
  3. B.M. Sarwar & Karypis. Item-based collaborative filtering recommendation algorithms [C]. Proceedings of the 10th International Conference on World Wide Web, N.Y, USA: ACM, 2001: 285+295.
  4. G Linden, B. Smith & J. York. Recommendations: Item to item collaborative filtering [J]. IEEE Internet Computing, 2003, 7(1):76–80. [CrossRef]
  5. Zhao Chenting & Ma Chune. Exploring the Secret inside the Recommendation Engine: In-depth Study on the Algorithm Relevant to Recommendation Engine–collaborative filtering [Online] Available from:
  6. M. Balabanovic & Y. Shoham. Fab: Content–based, collaborative recommendation [J]. Communications of the ACM, 1997, 40(3):66–72. [CrossRef]
  7. R. Melville & R.J. Mooney. Contented–based collaborative filtering for improved recommendations [C]. Proceedings of the 18th National Conference on Artificial Intelligence, 2002, pp.189–192.
  8. B.M. Kim, Q. Li & C.S. Park. A new approach for combining content–based and collaboration filters [J]. Journal of Intelligent Information System, 2006, 27(1):79–91. [CrossRef]
  9. H. Lyle & PI Dean. Clustering methods for collabo-rative filtering[C]. In: Workshop on Recommendation Systems at the Fifteenth National Conference on Artificial Systems, 1998, pp.114–129.
  10. M. Vozalis & K. Margaritis. Applying SVD on Item–based filtering[C]. Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, 2005, pp.464–469.
  11. R. Paulson, A. Tzanavari. Combining collaborative and content–Based filtering using conceptual graphs [J]. Modelling with Work. 2003:168–185. [CrossRef]
  12. Huang Zan & Chung Wingyan. A Graph Model for E-Commerce Recommender Systems[J]. J. ASIST, 2003, 55(3):259–274.
  13. R Resnick & H.R Varian. Recommender systems[J]. Communications of the ACM, 1997, 40(3):56–58. [CrossRef]
  14. Wu Lihua & Liu Lu. Modeling overview of personalized recommendation system users [J]. Information Journal, 2006, 25(1):55–56.
  15. G. Adomavicius & A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state of the art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 7(6):734–749.
  16. R.M. Bell & Y. Koren. Improved neighborhood–based collaborative filtering [C]. KDD Cup’07, San Jose, California, USA, August 12, 2007, pp.7+14.
  17. S. Baluja & R. Seth. Video suggestion and discovery for youtube: Taking random walks through the view graph [J]. Proceedings of 17th Intel World Wide Web Conference, 2008, pp.895–904.
  18. F. Fouss & A. Pirotte. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation [J]. IEEE Transactions, 19, 2007:355–369.
  19. Zhou Junjun, Wang Mingwen & He Shizhu. Collaborative filtering recommendation algorithm based on random walk and clustering smoothing [J]. Journal of Guangxi Normal University (Natural Science Edition), 2011, 29(1):173–178.
  20. Liu Jianguo, Zhou Tao, Guo Qiang & Wang Bing-hong. Overview of evaluation methods of the personalized recommendation system [J]. Complex Systems and Complexity Science, 2009, 6(3):1–10.