Open Access
SHS Web of Conferences
Volume 24, 2016
2015 International Seminar on Social Science and Humanistic Education (SSHE 2015)
Article Number 01015
Number of page(s) 4
Section Social science
Published online 05 February 2016
  1. K. J. Falconer. 1990. Fractal Geometry-Mathematical Foundations and Applications, New York, Wiley.
  2. K. J. Falconer. 1985. The Geometry of Fractal Sets, Cambridge: Cambridge University Press. [CrossRef]
  3. E. Ayer & R. S. Strichartz. 1999. Exact Hausdorff measure and intervals of maximum density for Cantor sets, Trans. Amer. Math. Soc. 351: 3725–3741. [CrossRef]
  4. Z. L. Zhou & M. Wu. 1999. The Hausdorff measure of a Sierpinski carpet, Sci. China (Series A), 47: 673–680.
  5. Z. L. Zhou & L. Feng. 2000. A new estimate of the Hausdorff measure of the Sierpinski gasket, Nonlinearity, 13: 479–491. [CrossRef]
  6. B. Jia, Z. L. Zhou & Z. Zhu. 2002. A lower bound for the Hausdorff measure of the Sierpinski gasket, Nonlinearity, 15: 393–404. [CrossRef]
  7. Z. L. Zhou & L. Feng. 2004. Twelve open problems on the exact value of the Hausdorff measure and on topological entropy: a brief survey of recent results, Nonlinearity, 17: 493–502. [CrossRef]