Issue |
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 6 | |
Section | Technical Communication | |
DOI | https://doi.org/10.1051/shsconf/202110202004 | |
Published online | 03 May 2021 |
Linguistic Approach to Semantic Correlation Rules
Karlsruhe University of Applied Sciences, Faculty of Information Management and Media, 76133 Karlsruhe, Germany
* Email: efch1012@hs-karlsruhe.de; charlotte.effenberger@gmail.com
As communication between humans and machines in natural language still seems essential, especially for end users, Natural Language Processing (NLP) methods are used to classify and interpret this. NLP, as a technology, combines grammatical, semantical, and pragmatical analyses with statistics or machine learning to make language logically understandable by machines and to allow new interpretations of data in contrast to predefined logical structures. Some NLP methods do not go far beyond a retrieving of the indexation of content. Therefore, indexation is considered as a very simple linguistic approach. Semantic correlation rules offer the possibility to retrieve easy semantic relations without a special tool by using a set of predefined rules. Therefore, this paper aims to examine, to which extend Semantic Correlation Rules (SCRs) will be able to retrieve linguistic semantic relations and to what extend a simple NLP method can be set up to allow further interpretation of data. In order to do so, an easy linguistic model was modelled by an indexation that is enriched with semantical relations to give data more context. These semantic relations were then queried by SCRs to set up an NLP method.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.