Issue |
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 8 | |
Section | Applications in Computer Science | |
DOI | https://doi.org/10.1051/shsconf/202110204001 | |
Published online | 03 May 2021 |
Using access log data to predict failure-prone students in Moodle using a small dataset
Graduate School of Science and Technology, Kumamoto University, Japan
* Corresponding author: sokout@st.cs.kumamoto-u.ac.jp
In this paper, the authors present a predictive model for failure-prone students using access log data from two small datasets in the Moodle learning system. Although various advanced machine learning algorithms, especially supervised predictive methods, can be used with very large datasets, these tools are often not available for most initial university research, especially in developing countries, to predict learners’ future outcomes. The authors examined the use of students’ access patterns to track failure-prone students so that early interventions could be made to prevent failure or dropout. Real data were collected through explicit learners’ actions, such as completing assignments and taking quizzes, from two compulsory blended courses, Operating System (junior level, or third year) and System Analysis and Design (sophomore level, or second year). Research methods were predominantly quantitative. The proposed models correctly predicted failure-prone students before the end of the second academic month (fifth week) for both courses (88% of the class for juniors and 86% of the class for sophomores), which made it possible to intervene early and provide required support during the semester. Similarly, the study outcomes showed the students’ past performance, specifically their grade point average, could affect their final performance. The outcomes of this study can be used to analyze the behaviors of learners that lead to high success and high retention rate. Furthermore, the study results will be used to report and provide feedback to the educational parties to value the quality of teaching and learning, the improvement of course materials, and increasing learner success.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.