Open Access
SHS Web of Conferences
Volume 25, 2016
ICITCE 2015 – 3rd International Conference on Information Technology and Career Education
Article Number 02024
Number of page(s) 7
Section Economy and technology
Published online 22 April 2016
  1. Kahraman, C. & Cebi, S. 2009. A new multi-attribute decision making method: Hierarchical fuzzy axiomatic design. Expert Systems with Applications. 36: 4848–4861. [Google Scholar]
  2. Chen, T. 2012. Multiple criteria group decision-making with generalized interval-valued fuzzy numbers based on signed distances and incomplete weights. Applied Mathematical Modelling, 36: 3029–3052. [CrossRef] [Google Scholar]
  3. Z.S. Xu & J. Chen. 2007. An interactive method for fuzzy multiple attributes group decision making. Inform Sciences, 177: 248–263. [CrossRef] [Google Scholar]
  4. Z.J. Wang, K.W. Li & W.Z. Wang. 2009. An approach to multiple attribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Inform Sciences, 179: 3026–3040. [CrossRef] [Google Scholar]
  5. J. Ye. 2010. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur J Oper Res, 205: 202–204. [CrossRef] [Google Scholar]
  6. G.W. Wei. 2010. Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Know Inf Syst, 25: 623–634. [CrossRef] [Google Scholar]
  7. D. Molodtsov. 1999. Soft set theory-first results. Comput Math Appl, 37: 19–31. [Google Scholar]
  8. P.K. Maji & A.R. Roy. 2002. An application of soft sets in a decision making problem. Comput Math Appl, 44: 1077–1083. [CrossRef] [Google Scholar]
  9. M.M. Mushrif, S. Sengupta & A.K. Ray. 2006. Texture classification using a novel, soft-set theory based classification algorithm. COMPUTER VISION-ACCV 2006, pp.246–254. [CrossRef] [Google Scholar]
  10. Y. Zou & Z. Xiao. 2008. Data analysis approaches of soft sets under incomplete information. Knowl-Based Syst, 21: 941–945. [CrossRef] [Google Scholar]
  11. A.R. Roy & P.K. Maji. 2007. A fuzzy soft set theoretic approach to decision making problems. J Comput Appl Math, 203: 412–418. [CrossRef] [Google Scholar]
  12. Z. Kong, L.Q. Gao & L.F. Wang. 2009. Comment on “A fuzzy soft set theoretic approach to decision making problems”. J Comput Appl Math, 223: 540–542. [CrossRef] [Google Scholar]
  13. N. Cagman & S. Enginoglu. 2010. Soft set theory and uni-int decision making. Eur J Oper Res, 207: 848–855. [CrossRef] [Google Scholar]
  14. F. Feng, Y.B. Jun, X. Liu & L. Li. 2010. An adjustable approach to fuzzy soft set based decision making. J Comput Appl Math, 234: 10–20. [CrossRef] [Google Scholar]
  15. S.J. Chen & C.L. Hwang. 1992. Fuzzy Multiple Attribute Decision Making: Method and Applications, New York: Springer-Verlag. [Google Scholar]
  16. T.L. Saaty. 1996. Decision Making with Dependence and Feedback: The Analytic Network Process: The Organization and Priorization of Complexity. Pittsburgh: RWS Publications. [Google Scholar]
  17. T.L. Saaty & L.G. Vargas. 1998. Diagnosis with dependent symptoms: Bayes theorem and the analytic hierarchy process. Oper Res, 46: 491–502. [Google Scholar]
  18. R. Yua & G. Tzeng. 2006. A soft computing method for multi-criteria decision making with dependence and feedback. Appl Math Computation, 180: 63–75. [CrossRef] [Google Scholar]
  19. B. Kosko. 1996. Fuzzy Engineering, New York: Prentice Hall. [Google Scholar]
  20. Z. Xu. 2007. A method for multiple attribute decision making with incomplete weight information in linguistic setting. Knowl-Based Syst, 20: 719–725. [CrossRef] [Google Scholar]
  21. D. Park, Y. Kwun, J. Park & I. Park. 2009. Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems. Math Comput Model, 50: 1279–1293. [CrossRef] [Google Scholar]
  22. S. French, R. Hartley, L.C. Thomas & D.J. White. 1983. Multi-objective Decision Making, New York: Academic Press. [Google Scholar]
  23. Y.T. Lin et al. 2010. A novel hybrid MCDM approach for outsourcing vendor selection: A case study for a semiconductor company in Taiwan. Expert Syst Appl, 37: 4796–4804. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.