Open Access
Issue
SHS Web Conf.
Volume 39, 2017
Innovative Economic Symposium 2017 (IES2017)
Article Number 01032
Number of page(s) 8
Section Strategic Partnerships in International Trade
DOI https://doi.org/10.1051/shsconf/20173901032
Published online 06 December 2017
  1. S. Shi, W. Liu, M. Jin, Share Price Predicting Using a Hybrid ARMA and BP Neural Network and Markov Model. Proceedings of the 14th International Conference on Communication Technology, Chengdu, China, 981–985 (2012) [Google Scholar]
  2. T. Ravichandra, T., Ch. Thingom, Share Price Predicting Using ANN Method. Information Systems Design and Intelligent Applications. Information Systems Design and Intelligent Applications, Advances in Intelligent Systems and Computing – Proceedings of Third International Conference INDIA 2016, 599–605 (2016) [Google Scholar]
  3. Ch. Chen, Ch. Kuo, S., Y. Chou, Dynamic Normalization BPN for Share Price Forecasting. Proceedings of the 2015 IEEE International Conference on Systems, Man and Cybernetics, 2855–2860, (2015) [CrossRef] [Google Scholar]
  4. D. Sánchez, P. Melin, Modular Neural Networks for Time Series Prediction Using Type-1 Fuzzy Logic Integration. In: Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, Studies in Computational Intelligence, 601, 141–145 (2015) [Google Scholar]
  5. E. Guresen, G. Kayakutlu, Definition of artificial neural networks with comparison to other networks. Procedia Computer Science, 3, 426–433 (2013) [Google Scholar]
  6. D. Santin, On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques. Applied Economics Letters, 15 (8), 597–600 (2015) [Google Scholar]
  7. M. Vochozka, Z. Rowland, V. Stehel, P. Šuleř, J. Vrbka, Cost modelling of the company using neural networks [Modelování nákladů podniku pomocí neuronových sítí]. 1st ed. Czech Republic, České Budějovice: Institute of Technology and Business, (2016) [Google Scholar]
  8. P. Šuleř, Cash Management of a Company Using Neural Networks. Littera Scripta, 9 (3), 125–140 (2016) [Google Scholar]
  9. P. Šuleř, Optimizing the capital structure of the company to maximize its profits by using neural networks on the example of building companies. Mathematical Modelling in Economics [Математичне моделювання в економіці], 7(3-4) (2016) [Google Scholar]
  10. M. S. Hossain, Z. Ch. Ong, Z. Ismail, S. Noroozi, S. Y. Khoo, Artificial neural networks for vibration based inverse parametric identifications: A review. Applied Soft Computing, 52, 203–219 (2017) [CrossRef] [Google Scholar]
  11. B. Wu, T. Duan, A Performance Comparison of Neural Networks in Forecasting Stock Price Trend. International Journal of Computational Intelligence Systems, 10 (1), 336–346 (2017) [CrossRef] [Google Scholar]
  12. J. Zheng, Forecast of Opening Share Price Based on Elman Neural Network. Chemical Engineering Transactions, 46, 565–570 (2015) [Google Scholar]
  13. L. Laboissiere, A. Leonel, A. S. R. Fernandes, G. Lage, Maximum and minimum share price forecasting of Brazilian power distribution companies based on artificial neural networks. Applied Soft Computing, 35, 66–74 (2015) [CrossRef] [Google Scholar]
  14. J. Sen, K. Arup, Artificial Neural Network Model for Predicting the Share Price of Indian IT Company. Proceedings of the 2nd International Conference on Soft Computing for Problem Solving, Jaipur, India, 1153–1159 (2014) [Google Scholar]
  15. ČEZ, ČEZ, a.s. – about company [online], Available at: https://www.cez.cz/cs/o-spolecnosti/cez/profil-spolecnosti.html (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.