Open Access
Issue
SHS Web Conf.
Volume 49, 2018
International Cooperation for Education about Standardization 2018 (ICES 2018) Conference Joint International Conference with 5th ACISE (Annual Conference on Industrial and System Engineering) and World Standard Cooperation Academic Day
Article Number 02005
Number of page(s) 6
Section Engineering
DOI https://doi.org/10.1051/shsconf/20184902005
Published online 02 October 2018
  1. A. Diponegoro and F. Rukman, “Modeling of a scheduling method for organizing training assignments,” in Proc. of the 2nd Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2017), Medan, Indonesia, pp. 184–187 (2017), http://dx.doi.org/10.2991/aisteel-17.2017.39. [Google Scholar]
  2. L. S. Franz and J. L. Miller, “Scheduling medical residents to rotations: solving the large-scale multiperiod staff assignment problem,” Oper. Res., 41 (2), pp. 269–279 (1993), https://doi.org/10.1287/opre.41.2.269. [CrossRef] [Google Scholar]
  3. J. Guo, D. R. Morrison and S. H. Jacobson, “Complexity results for the basic residency scheduling problem,” J. Sched., 17 (3), pp. 211–223 (2014), https://doi.org/10.1007/s10951-013-0362-9. [CrossRef] [Google Scholar]
  4. B. Nag, “A MIP model for scheduling India’s General elections and police movement,” OPSEARCH, 51 (4), pp. 562–576 (2014), https://doi.org/10.1007/s12597-013-0160-3. [CrossRef] [Google Scholar]
  5. Y. -H. Kuo, J. M. Leung and C. A. Yano, “Scheduling of multi-skilled staff across multiple locations,” Prod. Oper. Manag., 23 (4), pp. 626–644 (2014), https://doi.org/10.1111/poms.12184. [CrossRef] [Google Scholar]
  6. K. C. Gilbert and R. B. Hofstra, “Multidimensional assignment problems,” Decision Sci., 19 (2), pp. 306–321 (1988), https://doi.org/10.1111/j.1540-5915.1988.tb00269.x. [CrossRef] [Google Scholar]
  7. L. S. Franz, H. M. Baker, G. K. Leong and T. R. Rakes, “A mathematical model for scheduling and staffing multiclinic health regions,” Eur. J. Oper. Res., 41 (3) pp. 277–289 (1989), https://doi.org/10.1016/0377-2217(89)90249-X. [CrossRef] [Google Scholar]
  8. A. J. Robertson, “A set of greedy randomized adaptive local search procedure (GRASP) implementations for the multidimensional assignment problem,” Comput. Optim. Appl., 19 (2), pp. 145–164 (2001), https://doi.org/10.1023/A:1011285402433. [CrossRef] [Google Scholar]
  9. E. L. Pasiliao, “Local eighborhoods for the multidimensional assignment problem,” in Dynamics of Information Systems: Theory and Applications, New York, Springer New York, pp. 353–371 (2010). [CrossRef] [Google Scholar]
  10. M. Larsen, “Branch and bound solution of the multidimensional assignment problem formulation of data association,” Optim. Method. Softw., 27 (6), pp. 1101–1126, (2012), https://doi.org/10.1080/10556788.2011.648931. [CrossRef] [Google Scholar]
  11. C. Vogiatzis, E. L. Pasiliao and P. M. Pardalos, “Graph partitions for the multidimensional assignment problem,” Comput. Optim. Appl., 58 (1), pp. 205–224 (2014), https://doi.org/10.1007/s10589-013-9619-7. [CrossRef] [Google Scholar]
  12. M. L. Fisher, R. Jaikumar and L. N. Van Wassenhove, “A multiplier adjustment method for the generalized assignment problem,” Manage. Sci., 32 (9), pp. 1095–1103 (1986), https://doi.org/10.1287/mnsc.32.9.1095. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.