Open Access
SHS Web Conf.
Volume 73, 2020
Innovative Economic Symposium 2019 – Potential of Eurasian Economic Union (IES2019)
Article Number 01015
Number of page(s) 12
Section Potential of the Eurasian Economic Union
Published online 13 January 2020
  1. D. Chicea, S.M. Rei, A fast artificial neural network approach for dynamic light scattering time series processing. Measurement Science and Technology, 29(10) (2018) [CrossRef] [Google Scholar]
  2. M.S. Hossain, Z.C. Ong, Z. Ismail, S. Noroozi, S.Y. Khoo, Artificial neural networks for vibration based inverse parametric identifications: A review. Applied Soft Computing, 52, 203-219 (2017) [CrossRef] [Google Scholar]
  3. M.V. Cho. Learning Process in a Neural Network Model. Journal of the Korean Physical Society, 74(1), 63-72 (2019) [CrossRef] [Google Scholar]
  4. M. Vochozka, Formation of complex company evaluation method through neural networks based on the example of construction companies´ collection. AD ALTA – Journal of Interdisciplinary Research, 7(2), 232-23 (2017) [Google Scholar]
  5. Q.J. Zhu, L.C. Tian, X.H. Yang, L.F. Gan, N. Zhao, Y.Y. Ma, Advantages of Artificial Neural Network in Neutron Spectra Unfolding. Chinese Physics Letters, 31(7) (2014) [Google Scholar]
  6. Z. Rowland, J. Vrbka, Using artificial neural networks for prediction of key indicators of a company in global world. 16th International Scientific Conference on Globalization and its Socio-Economic Consequences, pp.1896-1903. ISBN 978-80-8154-191-9 (2016) [Google Scholar]
  7. D. Sánchez, P. Melin, Modular Neural Networks for Time Series Prediction Using Type-1 Fuzzy Logic Integration. Studies in Computational Intelligence: Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization, 601, 141-145 (2015) [Google Scholar]
  8. M. Deng, W.T. Yang, G.L. Liu, R. Jin, F. Xu, Y. Zhang, Heterogeneous Space-Time Artificial Neural Networks for Space-Time Series Prediction. Transactions in GIS, 22(1), 183-201 (2018) [CrossRef] [Google Scholar]
  9. M.K. Rafsanjani, M. Samareh, Chaotictimeseriesprediction by artificial neural network. Journal of Computational Methods in Sciences and Engineering, 16(3), 599-615 (2016) [CrossRef] [Google Scholar]
  10. B. Wang, S.H. Xu, X.H. Yu, P.C. Li, Time Series Forecasting Based on Cloud Process Neural Network. International Journal of Computational Intelligence Systems, 8(5) 992-1003 (2015) [CrossRef] [Google Scholar]
  11. F. Fernandez-Navarro, M.A. de la Cruz, P.A. Gutierrez, A. Castano, C. Hervas-Martinez, Time series forecasting by recurrent product unit neural network. Neural Computing & Applications, 29(3), 779-791 (2017) [CrossRef] [Google Scholar]
  12. T. Klieštik, J. Vrbka, Z. Rowland, Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium – Quarterly Journal of Economics and Economic Policy, 13(3), 569-593 (2018) [Google Scholar]
  13. Ministry of Industry and Trade – MIT, Export v ekonomice [Export in economy] [online], Available at: (2018) [Google Scholar]
  14. J. Gourdon, S. Monjon, S. Poncet, Trade policy and industrial policy in China: What motivates public authorities to apply restrictions on exports? China Economic Review, 40, 105-120 (2016) [CrossRef] [Google Scholar]
  15. Business, China: Trade and Economic Cooperation with the Czech Republic, [online],Available at: (2018) [Google Scholar]
  16. V. Stehel, P. Šuleř, Foreign trade between China and the Czech Republic. Littera Scripta, 9(3), 84-95 (2016) [Google Scholar]
  17. V. Humlerová, Czech-Chinese Business Cooperation Case Study. 31st International-Business-Information-Management-Association Conference Innovation management and education excellence through vision 2020, pp. 3185-3191 (2018) [Google Scholar]
  18. P. Higgins, T. Tha, W. Zhong, Forecasting China’s economic growth and inflation. China Economic Review, 41, 46-61 (2016) [CrossRef] [Google Scholar]
  19. T. Klieštik, M. Mišánková, K. Valášková, L. Švábová, Bankruptcy prevention: new effort to reflect on legal and social changes. Science and Engineering Ethics, 24(2), 791-803 (2018) [Google Scholar]
  20. Ch. Bolton, V. Machová, M. Kováčová, K. Valášková, The power of human-machine collaboration: Artificial intelligence, business automation, and the smart economy. Economics, Management, and Financial Markets, 13(4), 51-56 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.