Open Access
SHS Web Conf.
Volume 77, 2020
The 2nd ACM Chapter International Conference on Educational Technology, Language and Technical Communication (ETLTC2020)
Article Number 05001
Number of page(s) 8
Section Biomedical Engineering
Published online 08 May 2020
  1. M. E. Morris, F. Huxham, J. McGinley, K. Dodd, and R. Iansek, “The biomechanics and motor control of gait in Parkinson disease,” Clin. Biomech., vol. 16, no. 6, pp. 459–470, (2001) [CrossRef] [Google Scholar]
  2. Q. J. Almeida and C. A. Lebold, “Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment?,” J. Neurol. Neurosurg. Psychiatry, vol. 81, no. 5, pp. 513–518, (2010) [CrossRef] [Google Scholar]
  3. K. A. Ehgoetz Martens, F. Pieruccini-Faria, and Q. J. Almeida, “Could Sensory Mechanisms Be a Core Factor That Underlies Freezing of Gait in Parkinson’s Disease?,” PLoS One, vol. 8, no. 5, (2013) [Google Scholar]
  4. U. M. Fietzek, J. Zwosta, F. E. Schroeteler, K. Ziegler, and A. O. Ceballos-Baumann, “Levodopa changes the severity of freezing in Parkinson’s disease,” Park. Relat. Disord., vol. 19, no. 10, pp. 894–896, (2013) [CrossRef] [Google Scholar]
  5. Y. Kwon et al., “A practical method for the detection of freezing of gait in patients with Parkinson’s disease,” Clin. Interv. Aging, vol. 9, pp. 1709–1719, (2014) [Google Scholar]
  6. S. H. G. Mensink et al., “Additional weight load increases freezing of gait episodes in Parkinson’s disease; an experimental study,” J. Neurol., vol. 261, no. 5, pp. 999–1008, (2014) [CrossRef] [Google Scholar]
  7. A. Nieuwboer and N. Giladi, “Characterizing freezing of gait in Parkinson’s disease: Models of an episodic phenomenon,” Mov. Disord., vol. 28, no. 11, pp. 1509–1519, (2013) [CrossRef] [Google Scholar]
  8. J. G. Nutt, B. R. Bloem, N. Giladi, M. Hallett, F. B. Horak, and A. Nieuwboer, “Freezing of gait: Moving forward on a mysterious clinical phenomenon,” Lancet Neurol., vol. 10, no. 8, pp. 734–744, (2011) [CrossRef] [Google Scholar]
  9. J. Spildooren, S. Vercruysse, K. Desloovere, W. Vandenberghe, E. Kerckhofs, and A. Nieuwboer, “Freezing of gait in Parkinson’s disease: The impact of dual-tasking and turning,” Mov. Disord., vol. 25, no. 15, pp. 2563–2570, (2010) [CrossRef] [Google Scholar]
  10. B. R. Bloem, J. M. Hausdorff, J. E. Visser, and N. Giladi, “Falls and freezing of Gait in Parkinson’s disease: A review of two interconnected, episodic phenomena,” Mov. Disord., vol. 19, no. 8, pp. 871–884, (2004) [CrossRef] [Google Scholar]
  11. J. V. Jacobs, J. G. Nutt, P. Carlson-Kuhta, R. Allen, and F. B. Horak, “Dual tasking during postural stepping responses increases falls but not freezing in people with Parkinson’s disease,” Park. Relat. Disord., vol. 20, no. 7, pp. 779–781, (2014) [CrossRef] [Google Scholar]
  12. G. K. Kerr, C. J. Worringham, M. H. Cole, P. F. Lacherez, J. M. Wood, and P. A. Silburn, “Predictors of future falls in Parkinson disease,” Neurology, vol. 75, no. 2, pp. 116–124, (2010) [CrossRef] [Google Scholar]
  13. S. Vercruysse et al., “Explaining freezing of gait in Parkinson’s disease: Motor and cognitive determinants,” Mov. Disord., vol. 27, no. 13, pp. 1644–1651, (2012) [CrossRef] [Google Scholar]
  14. L. Coughlin and J. Templeton, “Hip fractures in patients with Parkinson’s disease,” Clin. Orthop. Relat. Res., vol. 148, pp. 192–195, (1980) [Google Scholar]
  15. A. Hosseinzadeh, M. Khalili, B. Sedighi, S. Iranpour, and A. A. Haghdoost, “Parkinson’s disease and risk of hip fracture: systematic review and meta-analysis,” Acta Neurol. Belg., vol. 118, no. 2, pp. 201–210, (2018) [CrossRef] [Google Scholar]
  16. N. Giladi, H. Shabtai, E. S. Simon, S. Biran, J. Tal, and A. D. Korczyn, “Construction of freezing of gait questionnaire for patients with Parkinsonism,” Park. Relat. Disord., vol. 6, no. 3, pp. 165–170, (2000) [CrossRef] [Google Scholar]
  17. N. Giladi et al., “Validation of the Freezing of Gait Questionnaire in patients with Parkinson’s disease,” Mov. Disord., vol. 24, no. 5, pp. 655–661, (2009) [CrossRef] [Google Scholar]
  18. S. Vercruysse, M. Gilat, J. M. Shine, E. Heremans, S. Lewis, and A. Nieuwboer, “Freezing beyond gait in Parkinson’s disease: A review of current neurobehavioral evidence,” Neurosci. Biobehav. Rev., vol. 43, pp. 213–227, (2014) [CrossRef] [Google Scholar]
  19. E. Matar, J. M. Shine, S. L. Naismith, and S. J. G. Lewis, “Using virtual reality to explore the role of conflict resolution and environmental salience in Freezing of Gait in Parkinson’s disease,” Park. Relat. Disord., vol. 19, no. 11, pp. 937–942, (2013) [CrossRef] [Google Scholar]
  20. J. Nantel, J. C. McDonald, S. Tan, and H. Bronte-Stewart, “Deficits in visuospatial processing contribute to quantitative measures of freezing of gait in Parkinson’s disease,” Neuroscience, vol. 221, no. 2012, pp. 151–156, (2012) [CrossRef] [Google Scholar]
  21. J. M. Shine et al., “Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia,” Brain, vol. 136, no. 12, pp. 3671–3681, (2013) [CrossRef] [Google Scholar]
  22. S. Vercruysse et al., “Abnormalities and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait,” Neurorehabil. Neural Repair, vol. 26, no. 6, pp. 636–645, (2012) [CrossRef] [Google Scholar]
  23. Q. J. Almeida, L. R. Wishart, and T. D. Lee, “Disruptive influences of a cued voluntary shift on coordinated movement in Parkinson’s disease,” Neuropsychologia, vol. 41, no. 4, pp. 442–452, (2003) [CrossRef] [Google Scholar]
  24. A. Nieuwboer, S. Vercruysse, P. Feys, O. Levin, J. Spildooren, and S. Swinnen, “Upper limb movement interruptions are correlated to freezing of gait in Parkinson’s disease,” Eur. J. Neurosci., vol. 29, no. 7, pp. 1422–1430, (2009) [CrossRef] [Google Scholar]
  25. S. Vercruysse et al., “The neural correlates of upper limb motor blocks in Parkinson’s disease and their relation to freezing of gait,” Cereb. Cortex, vol. 24, no. 12, pp. 3154–3166, (2014) [CrossRef] [Google Scholar]
  26. A. J. Williams, D. S. Peterson, M. Ionno, K. A. Pickett, and G. M. Earhart, “Upper extremity freezing and Dyscoordination in Parkinson’s disease: Effects of amplitude and cadence manipulations,” Parkinsons. Dis., vol. 2013, (2013) [Google Scholar]
  27. E. E. Tripoliti et al., “Automatic detection of freezing of gait events in patients with Parkinson’s disease,” Comput. Methods Programs Biomed., vol. 110, no. 1, pp. 12–26, (2013) [CrossRef] [Google Scholar]
  28. B. T. Cole, S. H. Roy, and S. H. Nawab, “Detecting freezing-of-gait during unscripted and unconstrained activity,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5649–5652, (2011) [Google Scholar]
  29. S. Rezvanian and T. E. Lockhart, “Towards real-time detection of freezing of gait using wavelet transform on wireless accelerometer data,” Sensors (Switzerland), vol. 16, no. 4, (2016) [Google Scholar]
  30. J. F. Hafer, S. G. Provenzano, K. L. Kern, C. E. Agresta, J. A. Grant, and R. F. Zernicke, “Measuring markers of aging and knee osteoarthritis gait using inertial measurement units,” J. Biomech., vol. 99, p. 109567, (2020) [CrossRef] [Google Scholar]
  31. H. Cantú, J. N. Côté, and J. Nantel, “A new method based on quiet stance baseline is more effective in identifying freezing in Parkinson’s disease,” PLoS One, vol. 13, no. 11, pp. 1–14, (2018) [Google Scholar]
  32. J. Nantel, C. de Solages, and H. Bronte-Stewart, “Repetitive stepping in place identifies and measures freezing episodes in subjects with Parkinson’s disease,” Gait Posture, vol. 34, no. 3, pp. 329–333, (2011) [CrossRef] [Google Scholar]
  33. J. D. Schaafsma, Y. Balash, T. Gurevich, A. L. Bartels, J. M. Hausdorff, and N. Giladi, “Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease,” Eur. J. Neurol., vol. 10, no. 4, pp. 391–398, (2003) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.