Open Access
SHS Web Conf.
Volume 88, 2020
International Scientific Forum “Issues of Modern Linguistics and the Study of Foreign Languages in the Era of Artificial Intelligence (dedicated to World Science Day for Peace and Development)” (LLT Forum 2020)
Article Number 01002
Number of page(s) 7
Section Conference 1 - Fundamental Problems of Modern Theoretical and Applied Linguistics in an Interdisciplinary Aspect in the era of High Technologies
Published online 24 December 2020
  1. B. Pang, & L. Lee, Opinion Mining and Sentiment Analysis, Foundations and Trends in Information Retrieval. 2. 1–2. 1–135 (2008) [CrossRef] [Google Scholar]
  2. Zh. Peng, Q. Hu, & J. Dang Multi-kernel SVM Based DePression Recognition Using Social Media Data, International Journal of Machine Learning and Cybernetics, US.10 (1). 43-57 (2019) [CrossRef] [Google Scholar]
  3. G. Yang, H. He, & Q. Chen, Emotion-Semantic-Enhanced Neural Network. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 27 (1). 531–543. (2019). [CrossRef] [Google Scholar]
  4. A. Neviarouskaya, H. Prendinger, & M. Ishizuka @AM: Textual Attitude Analysis Model. Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. 80-88 (2010) [Google Scholar]
  5. C.E. Izard, Basic emotions, relations among the emotions and emotion-cognition relation. Psychological Review. 99 (3). 561–565. doi: 10.1037/0033-295x.99.3.561 (1992) [CrossRef] [Google Scholar]
  6. S. Aman & S. Szpakowicz, Identifying ExPressions of Emotion in Text. Lecture Notes in Computer Science. 4629. 196-205 (2007) [CrossRef] [Google Scholar]
  7. H. Lövheim, A New Three-Dimensional Model for Emotions and Monoamine Neurotransmitters. Medical Hypotheses. 78. 341–348 (2012) [CrossRef] [Google Scholar]
  8. E.V. Paducheva Semanticheskie issledovaniya: Semantika vremeni i vida v russkom yazyke; Semantika narrative [Semantic studies: Tense and aspect semantics in Russian; Semantics of the narrative]. Moscow: Yazyki slavyanskoi kul’tury (2010) (in Russ.) [Google Scholar]
  9. E.S. Yakovleva, Fragmenty russkoi yazykovoi kartiny mira (modeli prostranstva, vremeni i vospriyatiya) [Fragments of Russian linguistic world view (model of space, time and perception)]. Moscow: Izdatel’stvo «Gnozis» (1994) (In Russ) [Google Scholar]
  10. G. Lakoff, The contemporary theory of metaphor A. Ortony (Ed.), Metaphor and thought (2nd ed.) (p. 202-251). Cambridge: Cambridge University Press. (1993) [CrossRef] [Google Scholar]
  11. S. Chaffar, D. Inkpen, Using a Heterogeneous Dataset for Emotion Analysis in Text. In Butz C., Lingras P. (eds.) Advances in Artificial Intelligence. Canadian AI. Lecture Notes in Computer Science. 6657. 62–67. Springer, Berlin, Heidelberg. (2011) [CrossRef] [Google Scholar]
  12. A. Kalinin, A. Kolmogorova, A. Malikova, Tool for Non-Discrete Emotional Annotation of Text. Web application (2020) [Google Scholar]
  13. A. Kilgarriff, V. Baisa, J. Bušta, M. Jakubíček, V. Kovář, J. Michelfeit, P. Rychlý, V. Suchomel, Lexicography: Journal of ASIALEX Volume 1. 7—36. (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.