Open Access
Issue
SHS Web of Conf.
Volume 92, 2021
The 20th International Scientific Conference Globalization and its Socio-Economic Consequences 2020
Article Number 01001
Number of page(s) 7
Section Global Impact of COVID 19 on Economy and Society
DOI https://doi.org/10.1051/shsconf/20219201001
Published online 13 January 2021
  1. Shi, P., Cao, S., Feng, P. (2020). SEIR Transmission dynamics model of 2019 nCoV coronavirus with considering the weak infectious ability and changes in latency duration. Medrxiv. [Google Scholar]
  2. Eisenhammer, T., Hübler, A., Packard, N. (1991). Modelling experimental time series with ordinary differential equations. Biological Cybernetics, 65, 107-112. [CrossRef] [Google Scholar]
  3. Worldometer (2020). Azerbaijan. Retrieved from : https://www.worldometers.info/coronavirus/country/azerbaijan/ [Google Scholar]
  4. Allen, C., Tsou, M.H., Aslam, A., Nagel, A., Gawron, J.M. (2016). Applying GIS and machine learning methods to Twitter data for multiscale surveillance of influenza. PLOS ONE, 11(7), 157734. [Google Scholar]
  5. Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457, 1012-1014. [CrossRef] [PubMed] [Google Scholar]
  6. Gu, Y., Chen, F., Liu, T., Lv, X., Shao, Z., Lin, H., Liang, C., Zeng, W., Xiao, J., Zhang, Y. (2015). Early detection of an epidemic erythromelalgia outbreak using Baidu search data. Scientific Reports, 5(1), 12649. [CrossRef] [Google Scholar]
  7. Lampos, V., Miller, A. C., Crossan, S., Stefansen, C. (2015). Advances in nowcasting influenza-like illness rates using search query logs. Scientific Reports, 5(1), 12760. [CrossRef] [Google Scholar]
  8. Akpa, O. M., Oyejola, B. A. (2010). Modeling the transmission dynamics of HIV/AIDS epidemics: an introduction and a review. The Journal of Infection in Developing, Countries, 4, 597-608. [CrossRef] [Google Scholar]
  9. Alaniz, A. J., Bacigalupo, A., Cattan, P. E. (2017). Spatial quantification of the world population potentially exposed to Zika virus. International Journal of Epidemiology, 46, 966-975. [CrossRef] [Google Scholar]
  10. Bisanzio, D., Bertolotti, L., Tomassone, L., Amore, G., Ragagli, C., Mannelli, A., Giacobini M., Provero P. (2010). Modeling the spread of vector-borne diseases on bipartite networks. PLOS ONE, 5(11), 13796. [CrossRef] [Google Scholar]
  11. Alonso, W. J., Viboud, C., Simonsen, L., Hirano, E. W., Daufenbach, L. Z., Miller, M. (2007). Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics. American Journal of Epidemiology, 165(12), 1434-1442. [CrossRef] [Google Scholar]
  12. Chowell, G., Hengartner, N. W., Castillo-Chavez, C., Fenimore, P. W., Hyman, J. M. (2004). The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. Journal of Theoretical Biology, 229(1), 119-126. [CrossRef] [PubMed] [Google Scholar]
  13. Gog, J. R., Ballesteros, S., Viboud, C., Simonsen, L., Bjornstad, O. N., Shaman, J., Chao, D. L., Khan, F., Grenfell, B. T. (2014). Spatial transmission of 2009 pandemic influenza in the US. PLOS Computational Biology, 10(6), 1003635. [CrossRef] [Google Scholar]
  14. Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J., Naumova E. N. (2007. Influenza seasonality: underlying causes and modeling theories. Journal of Virology, 81(11), 5429-5436. [CrossRef] [Google Scholar]
  15. Simonsen, L. (1999). The global impact of influenza on morbidity and mortality. Vaccine, 17(1), 3-10. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.