Open Access
SHS Web of Conf.
Volume 92, 2021
The 20th International Scientific Conference Globalization and its Socio-Economic Consequences 2020
Article Number 09011
Number of page(s) 10
Section International Relations and Globalization
Published online 13 January 2021
  1. Palafox-Alcantar, P. G., Hunt, D. V. L., & Rogers, C. D. F. (2020). The complementary use of game theory for the circular economy: A review of waste management decision-making methods in civil engineering. Waste Management, 102, 598-612. [CrossRef] [Google Scholar]
  2. Piotrowski, E. W., & Sładkowski, J. (2003). Quantum english auctions. Physica A: Statistical Mechanics and its Applications, 318(3-4), 505-515. [CrossRef] [Google Scholar]
  3. Omrani, H., Fahimi, P., & Mahmoodi, A. (2020). A data envelopment analysis game theory approach for constructing composite indicator: An application to find out development degree of cities in West Azarbaijan province of Iran. Socio-Economic Planning Sciences, 69, 100675. [CrossRef] [Google Scholar]
  4. Becchetti, L., Bruni, L., & Zamagni, S. (2019). The Microeconomics of Wellbeing and Sustainability: Recasting the Economic Process. Academic Press. [Google Scholar]
  5. Golroudbary, S. R., El Wali, M., & Kraslawski, A. (2020). Rationality of using phosphorus primary and secondary sources in circular economy: Game-theory-based analysis. Environmental Science & Policy, 106, 166-176. [CrossRef] [Google Scholar]
  6. Whalen, K. A., Berlin, C., Ekberg, J., Barletta, I., & Hammersberg, P. (2018). ‘All they do is win’: Lessons learned from use of a serious game for Circular Economy education. Resources, Conservation and Recycling, 135, 335-345. [CrossRef] [Google Scholar]
  7. Liu, G., Xiao, Z., Tan, G., Li, K., & Chronopoulos, A. T. (2020). Game theory-based optimization of distributed idle computing resources in cloud environments. Theoretical Computer Science, 806, 468-488. [CrossRef] [Google Scholar]
  8. de Lange, D., & Valliere, D. (2020). Investor preferences between the sharing economy and incumbent firms. Journal of Business Research, 116, 37-47. [CrossRef] [Google Scholar]
  9. Skare, M., & Porada-Rochoń, M. (2020). Multi-channel singular-spectrum analysis of financial cycles in ten developed economies for 1970–2018. Journal of Business Research, 112, 567-575. [CrossRef] [Google Scholar]
  10. Gazda, J., Bugar, G., Volosin, M., Drotar, P., Horvath, D., & Gazda, V. (2017). Dynamic spectrum leasing and retail pricing using an experimental economy. Computer Networks, 121, 173-184. [CrossRef] [Google Scholar]
  11. Suzanne, E., Absi, N., & Borodin, V. (2020). Towards Circular Economy in Production Planning: Challenges and Opportunities. European Journal of Operational Research, 287(1), 168-190. [CrossRef] [Google Scholar]
  12. Fahrenberg, U., & Legay, A. (2020). A linear-time–branching-time spectrum for behavioral specification theories. Journal of Logical and Algebraic Methods in Programming, 110, 100499. [CrossRef] [Google Scholar]
  13. Riser, R., Osipov, V. A., & Kanzieper, E. (2020). Nonperturbative theory of power spectrum in complex systems. Annals of Physics, 413, 168065. [CrossRef] [Google Scholar]
  14. Orrell, D. (2020). A quantum model of supply and demand. Physica A: statistical Mechanics and its Applications, 539, 122928. [CrossRef] [Google Scholar]
  15. Shubik, M. (1999). Quantum economics, uncertainty and the optimal grid size. Economics Letters, 64(3), 277-278. [CrossRef] [Google Scholar]
  16. Rashkovskiy, S., & Khrennikov, A. (2020). Psychological ‘double-slit experiment’in decision making: Quantum versus classical. Biosystems, 195, 104171. [CrossRef] [Google Scholar]
  17. Samadi, A. H., Montakhab, A., Marzban, H., & Owjimehr, S. (2018). Quantum Barro– Gordon game in monetary economics. Physica A: Statistical Mechanics and its Applications, 489, 94-101. [CrossRef] [Google Scholar]
  18. Phoenix, S., Khan, F., & Teklu, B. (2020). Preferences in quantum games. Physics Letters A, 384(15), 126299. [CrossRef] [Google Scholar]
  19. Wang, H., & Xiang, H. (2019). Quantum algorithm for total least squares data fitting. Physics Letters A, 383(19), 2235-2240. [CrossRef] [Google Scholar]
  20. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., & Tanaka, Y. (2012). Quantum-like dynamics of decision-making. Physica A: Statistical Mechanics and its Applications, 391(5), 2083-2099. [CrossRef] [Google Scholar]
  21. Piotrowski, E. W., & Sładkowski, J. (2002). Quantum market games. Physica A: Statistical Mechanics and its Applications, 312(1-2), 208-216. [CrossRef] [Google Scholar]
  22. Danilov, V. I., & Lambert-Mogiliansky, A. (2018). Preparing a (quantum) belief system. Theoretical Computer Science, 752, 97-103. [CrossRef] [Google Scholar]
  23. Moreira, C., Tiwari, P., Pandey, H. M., Bruza, P., & Wichert, A. (2020). Quantum-like influence diagrams for decision-making. Neural Networks, 132, 190-210. [CrossRef] [Google Scholar]
  24. Haven, E., & Khrennikov, A. (2017). The use of action functionals within the quantum-like paradigm. Journal of Mathematical Psychology, 78, 13-23. [CrossRef] [Google Scholar]
  25. Yang, Z., & Zhang, X. (2019). Quantum repeated games with continuous-variable strategies. Physics Letters A, 383(24), 2874-2877. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.