Open Access
Issue
SHS Web Conf.
Volume 107, 2021
9th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2 2021)
Article Number 05004
Number of page(s) 7
Section Information Systems and Technologies in Economics
DOI https://doi.org/10.1051/shsconf/202110705004
Published online 24 May 2021
  1. S. Kiyko, Innovative Technologies and Scientific Solutions for Industries 4, 56 (2020) [Google Scholar]
  2. H.M. Hnatiienko, V.I. Snytiuk, Ekspertni tekhnolohii pryiniattia rishen (Maklaut, Kyiv, 2008) [Google Scholar]
  3. V.M. Molokanova, O.P. Orliuk, V.O. Petrenko, O.B. Butnik-Syverskyi, V.L. Khomenko, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, 131 (2020) [Google Scholar]
  4. S.G. Kiyko, Science and technology of the Air Force of the Armed Forces of Ukraine 4, 133 (2020) [Google Scholar]
  5. C.K. Belt, Energy Management for the Metals Industry (CRC Press, New York, 2017) [Google Scholar]
  6. M. Schulze, H. Nehler, M. Ottosson, P. Thollander, Journal of Cleaner Production 112, 3692 (2016) [Google Scholar]
  7. M.T. Hagan, H.B. Demuth, M.H. Beale, O.D. Jesús, Neural Network Design, 2nd edn. (2014), ISBN 978-0-9717321-1-7, https://hagan.okstate.edu/NNDesign.pdf [Google Scholar]
  8. P.P. Phyo, C. Jeenanunta, Electricity load forecasting using a deep neural network (2019), https://ph01.tci-thaijo.org/index.php/easr/article/view/116025 [Google Scholar]
  9. D.Y. Goswami, F. Kreith, eds., Energy Eflciency and Renewable Energy Handbook, 2nd edn. (CRC Press, Boca Raton, 2015), ISBN 9780429103070 [Google Scholar]
  10. C.F. Kutscher, J.B. Milford, F. Kreith, Principles of Sustainable Energy Systems, 3rd edn. (CRC Press, Boca Raton, 2018), ISBN 9780429485589 [Google Scholar]
  11. S. Semerikov, I. Teplytskyi, Y. Yechkalo, A. Kiv, CEUR Workshop Proceedings 2257, 122 (2018) [Google Scholar]
  12. I.M. Kirpichnikova, L.A. Saplin, K.L. Solomakho, Vestnik YuUrGU. Energetika 14, 16 (2014) [Google Scholar]
  13. G.P. Shumilova, N.E. Gotman, T.B. Starczeva, Prognozirovanie elektricheskikh nagruzok pri operativnom upravlenii elektroenergeticheskimi sistemami na osnove nejrosetevykh struktur (URO RAN, Ekaterinburg, 2008) [Google Scholar]
  14. E.V. Bodyanskij, O.G. Rudenko, Iskusstvenny‘e nejronny‘e seti: arkhitektury, obuchenie, primeneniya (Teletekh, Khar‘kov, 2004) [Google Scholar]
  15. V. Derbentsev, A. Matviychuk, N. Datsenko, V. Bezkorovainyi, A. Azaryan, CEUR Workshop Proceedings 2713, 434 (2020) [Google Scholar]
  16. I.V. Brejdo, Y.F. Bulatbaeva, G.D. Orazgaleeva, Algoritm sozdaniya modeli prognozirovaniya energopotrebleniya na osnove nejronnoj seti v Matlab (Novacziya, Krasnodar, 2020) [Google Scholar]
  17. V.V. Vichuzhanin, N.D. Rudnichenko, Informatics and Mathematical Methods in Simulation 6, 333 (2016) [Google Scholar]
  18. Z. Huang, C. Yang, X. Zhou, S. Yang, Cognitive Computation 12, 357 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.