Open Access
SHS Web Conf.
Volume 110, 2021
International Conference on Economics, Management and Technologies 2021 (ICEMT 2021)
Article Number 05009
Number of page(s) 10
Section Tecnologies
Published online 11 June 2021
  1. D.А. Gubanov, Social Networks. Models of information influence, management and confrontation. Moscow: Izdatelstvo phisiko-matematicheskoy literaturi, 228 p., 2010. [Google Scholar]
  2. I.А. Chubukova, Data Mining. Moscow: Internet – Universitet Informatsionnich Tekhnologiy, 470 p., 2016. [Google Scholar]
  3. Е.А. Lebedeva, Analysis of message sentiment in microblogs using probabilistic models, 35 p., 2014. [Google Scholar]
  4. Е.V. Kotelnikov, Automatic analysis of text sentiment based on machine learning methods. Komputernaya lingvistika I intelektualtie tekhnologii. Materiali ezhegodnoi mezhdunarodnoi konferentsii Dialog [Computational linguistics and intelligent technologies. Proceedings of annual international conference Dialogue], Issue 11 (18), pp. 7–10., 2012. [Google Scholar]
  5. Yu.А. Osipov, Application of k-means cluster analysis for classification of scientific texts. MSiM, 2017. [Google Scholar]
  6. J. Hipp, U. Guntzer, G. Nakaeizadeh, Algorithms for Association Rule Mining [A General Survey and Comparison. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining], 2000. [Google Scholar]
  7. R. Ramezani, M. Saraee, M.A. Nematbakhsh, MRAR: Mining Multi-Relation Association Rules, Journal of Computing and Security, Т. 1, № no. 2, 2014. [Google Scholar]
  8. I. Ivanichev, KPI in SMM. 30+ metrics of effective marketing in social networks. Internet – agentsvo Teksterra, 2018. Available at: (accessed 25 October 2020). [Google Scholar]
  9. А.А. Senatorov, Content Marketing: Social media promotion strategies. Moscow: Alpina Publisher, 160 p., 2020. [Google Scholar]
  10. Yu. Rubtsova, Automatic construction and analysis of short texts corpus (microblog posts) for the task of developing and training a tone classifier. Inzheneriya znaniy I tekhnologii semanticheskogo veba, Vol. 1., pp. 109-116, 2012. [Google Scholar]
  11. V.S. Belov, Information and analytical systems. Design and application basics. Moscow: Evraziiskiy otkritiy institut, 112 p, 2010. [Google Scholar]
  12. E.A. Leonov, Y.A. Leonov, Y.M. Kazakov, L.B. Filippova, Intellectual subsystems for collecting information from the internet to create knowledge bases for self-learning systems. Proceedings of the Second International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’17). IITI 2017. Advances in Intelligent Systems and Computing. —2017— vol 679. — Springer, Cham, p. 95-103 [Google Scholar]
  13. A. A. Kuzmenko, D. E. Kondrashin, Methods and approaches to the development of a system for automated analysis of the dynamics of changes in the area of forest stands based on pattern automatic recognition methods. ERGODESIGN, № 4 (6), 230-240 pp, 2019 [CrossRef] [Google Scholar]
  14. YU.A. Leonov, E.A. Leonov, A.A. Kuzmenko, A.A. Martynenko, E.E. Averchenkova, R.A. Filippov Selection of rational schemes automation based on working synthesis instruments for technological processes. Yelm, WA, USA: Science Book Publishing House LLC, 192 p., 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.