Open Access
Issue
SHS Web Conf.
Volume 129, 2021
The 21st International Scientific Conference Globalization and its Socio-Economic Consequences 2021
Article Number 03011
Number of page(s) 9
Section Financial Management and Financial Markets
DOI https://doi.org/10.1051/shsconf/202112903011
Published online 16 December 2021
  1. Almehmadi, A. (2021). COVID-19 pandemic data predict the stock market. Computer Systems Science and Engineering, 36(3), 451-460. [CrossRef] [Google Scholar]
  2. Al-qudah, A. A., & Houcine, A. (2021) Stock markets’ reaction to COVID-19: Evidence from the six WHO regions. Journal of Economic Studies. [Google Scholar]
  3. Alshammari, A. A., Altarturi, B., Saiti, B., & Munassar, L. (2020). The impact of exchange rate, oil price and gold price on the Kuwaiti stock market: A wavelet analysis. European Journal of Comparative Economics, 17(1), 31-54. [Google Scholar]
  4. Appiah, M., Frowne, D. Y. I., & Tetteh, D. (2020). Capital market and financial development on growth: a panel ARDL analysis. Indonesian Capital Market Review, 12(1), 28-41. [CrossRef] [Google Scholar]
  5. Bora, D., & Basistha, D. (2021). The outbreak of COVID-19 pandemic and its impact on stock market volatility: Evidence from a worst-affected economy. Journal of Public Affairs, Article e2623. [Google Scholar]
  6. Burza cenných papírů Praha [Prague Stock Market]. (2021, April). Prague Stock Exchange. https://www.pse.cz/ [Google Scholar]
  7. Burza cenných papírů Praha [Prague Stock Market]. (2021, December). Český akciový index PX letos klesl o osm procent na 1027 bodů [The Czech PX stock index fell eight percent this year to 1,027 points]. https://www.pse.cz/novinky/cesky-akciovy-index-px-letos-klesl-o-osm-procent-na-1027-bodu [Google Scholar]
  8. Česká bankovní asociace [Czech Bank association]. (February, 2021). Makroekonomická prognóza ČBA za únor 2021 [CBA macroeconomic forecast for February 2021]. https://cbaonline.cz/makroekonomicka-prognoza-cba-unor-2021 [Google Scholar]
  9. Conseq.cz. (2021, March). Vývoj na finančních trzích [Developments in financial markets]. https://www.conseq.cz/getmedia/c4041bf5-3435-402a-98ad-4ea711045b93/markets-report-brezen_1.pdf.aspx [Google Scholar]
  10. Reuse, S., & Svoboda, M. (2017). Czech PX-TR - derivation of historical data for the performance index and analysis of two trading strategies. (2017). 11th International Scientific Conference on Financial Management of Firms and Financial Institutions, Czech republic, 723–731. [Google Scholar]
  11. Dias, R., Pardal, P., Teixeira, N., & Machová, V. (2020). Financial market integration of ASEAN-5 with China. Littera Scripta, 13(1), 46-63. [Google Scholar]
  12. Finance v praxi [Finance in practice]. (2019, January). Výnosy českých akcií v roce 2019 [Yields on Czech shares in 2019]. https://www.financevpraxi.cz/finance-vynosnost-akcii-prazske-burzy-2019 [Google Scholar]
  13. Finex.cz. (2021). index PX. https://finex.cz/index/px-index/ [Google Scholar]
  14. Fxstreet.cz. (2021, February). České akcie zatím nesmazaly ztráty z doby pandemické paniky [Czech shares have not yet erased losses from the time of the pandemic panic]. https://www.fxstreet.cz/ceske-akcie-zatim-nesmazaly-ztraty-z-doby-pandemicke-paniky.html [Google Scholar]
  15. Gu, Y., & Yamashita, N. (2021). An alternating direction method of multipliers with the BFGS update for structured convex quadratic optimization. Computational and Applied Mathematics, 40(3), Article 81. [Google Scholar]
  16. Gubareva, M., & Chondrogiannis, I. (2020). Capital gains sensitivity of us BBB-rated debt to US treasury market: Markov-Switching Analyses. Complexity, 1–13. [CrossRef] [Google Scholar]
  17. Horníková, M. (2003). Modeling the Behavior of Prague Stock Exchange Index. https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0304/0304001.pdf [Google Scholar]
  18. Janková, Z. (2019). Comparison of portfolios using markowitz and downside risk theories on the czech stock market. Prague University of Economics and Business. [Google Scholar]
  19. Liu, S., & Yang, D. (2021). Identification and detection algorithm of electric energy disturbance in microgrid based on wavelet analysis and neural network. EURASIP Journal on Wireless Communications and Networking, 2021(1), Article 27. [Google Scholar]
  20. Lu, B. T., Ma, F., Wang, J. Q., Ding, H., & Wahab, M. I. M. (2021). Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market. International Review of Economics & Finance, 72, 672–689. [CrossRef] [Google Scholar]
  21. Majerová, J., & Fernandez, C. (2020). How to make phoenix to arise from the ashes: Brand loyalty as a prospective pillar of branding in tourism after crisis COVID-19. Littera Scripta, 13(2), 49-58. [Google Scholar]
  22. Šuleř, P., Horák, J., & Krulický, T. (2020). Validation of the prediction of ČEZ stock prices. Littera Scripta, 13(1), 194-210. [Google Scholar]
  23. Vochozka, M., Horák, J., & Šuleř, P. (2019) Equalizing seasonal time series using artificial neural networks in predicting the Euro-Yuan exchange rate. Journal of Risk and Financial Management, 12(2), Article 76. [CrossRef] [Google Scholar]
  24. Vochozka, M., Horák, J., & Krulický, T. (2020). Innovations in management forecast: Time development of stock prices with neural networks. Marketing and Management of Innovations, 2, 324–339. [CrossRef] [Google Scholar]
  25. Yilanci, V., Ozgur, O., & Gorus, M. S. (2021). Stock prices and economic activity nexus in OECD countries: New evidence from an asymmetric panel Granger causality test in the frequency domain. Financial Innovation, 7(1), Article 11. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.