Open Access
SHS Web Conf.
Volume 132, 2022
Innovative Economic Symposium 2021 – New Trends in Business and Corporate Finance in COVID-19 Era (IES2021)
Article Number 01016
Number of page(s) 8
Section New Trends in Business and Corporate Finance in COVID-19 Era
Published online 05 January 2022
  1. I. Cohen, Anodot. [online], Available at: (2020) [Google Scholar]
  2. R. Nayak, S. Das, U. A. Pati, Comprehensive review on deep learning-based methods for video anomaly detection. Image Vision Computer (2021) [Google Scholar]
  3. S. Waqas, C. Chen, S. Mubarak, Real-world Anomaly Detection in Surveillance Videos. Computer Vision Foundation (2019) [Google Scholar]
  4. S. Dubey, A. Boragule, J. Gwak, M. Jeon, Anomalous Event Recognition in Videos Based on Joint Learning of Motion and Appearance with Multiple Ranking Measures. Appl. Sci. (2021) [Google Scholar]
  5. K. Doshi, Y. Yilmaz, Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate. Pattern Recognition (2021) [Google Scholar]
  6. A. Rosebrock, Pyimagesearch, [online], Available at: (2015) [Google Scholar]
  7. K. Hara, H. Kataoka, Y. Satoh, Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18-23, pp. 6546–6555 (2018) [Google Scholar]
  8. L. Wang, Y. Xu, J. Cheng, H. Xia, J. Yin, J. Wu, Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks. IEEE Access, 6, pp. 17913–17922 (2018) [CrossRef] [Google Scholar]
  9. J. Yu, D. Y. Kim, Y. Yoon, M. Jeon, Action Matching Network: Open-set Action Recognition using Spatio-Temporal Representation Matching. Visual Computer, 36, pp. 1457–1471 (2020) [CrossRef] [Google Scholar]
  10. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–1149 (2017) [CrossRef] [Google Scholar]
  11. S. Sun, N. Akhtar, H. Song, A. Mian, M. Shah, Deep Affinity Network for Multiple Object Tracking. Journal of Latex Class Files, 13(9) (2018) [Google Scholar]
  12. G. Ciaparrone, F. L. Sa’nchez, S. Tabik, L. Troiano, R. Tagliaferri, F. Herrera, Deep learning in video multi-object tracking: A survey. Neurocomputing, 381, pp. 61–88 (2020) [CrossRef] [Google Scholar]
  13. J. Yu, K. Yow, M. Jeon, Joint Representation Learning of Appearance and Motion for Abnormal Event Detection. Computer Science, Machine Vision and Applications (2018) [Google Scholar]
  14. D. Abati, A. Porrello, S. Calderara, R. Cucchiara, Latent Space Autoregression for Novelty Detection. IEEE Conference on Computer Vision and Pattern Recognition (2019) [Google Scholar]
  15. L. Wang, F. Zhou, Z. Li, W. Zuo, H. Tan, Abnormal Event Detection in Videos Using Hybrid Spatio-Temporal Autoencoder. IEEE International Conference on Image Processing (2018) [Google Scholar]
  16. D. Xu, Y. Yan, E. Ricci, N. Sebe, Detecting anomalous events in videos by learning deep representations of appearance and motion. Computer Vision Image Understanding, 156, 117–127 (2017) [CrossRef] [Google Scholar]
  17. Y. S. Chong, Y. H. Tay, Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder. Computer Vision and Pattern Recognition (2017) [Google Scholar]
  18. J. R. Medel, A. Savakis, Anomaly Detection in Video Using Predictive Convolutional Long Short-Term Memory Networks. Computer Vision and Pattern Recognition (2016) [Google Scholar]
  19. J. Brownlee, Generative Adversarial Networks with Python: Deep Learning Generative Models for Image Synthesis and Image Translation. J. Brownlee. Machine Learning Mastery (2021) [Google Scholar]
  20. A. Odena, Semi-Supervised Learning with Generative Adversarial Networks. Machine Learning (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.