Open Access
Issue |
SHS Web Conf.
Volume 139, 2022
The 4th ETLTC International Conference on ICT Integration in Technical Education (ETLTC2022)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 5 | |
Section | Topics in Computer Science | |
DOI | https://doi.org/10.1051/shsconf/202213903009 | |
Published online | 13 May 2022 |
- Zhang, X.-D. A Matrix Algebra Approach to Artificial Intelligence; Springer, 2020; [Google Scholar]
- Papatsimouli, M.; Lazaridis, L.; Kollias, K.-F.; Skordas, I.; Fragulis, G.F. Speak with Signs: Active Learning Platform for Greek Sign Language, English Sign Language, and Their Translation. 2020, doi:10.48550/arXiv.2012.11981. [Google Scholar]
- Hitboxes: A Survey About Collision Detection in Video Games | SpringerLink Available online: https://link.springer.com/chapter/10.1007/978-3-030-77277-2_24 (accessed on 21 March 2022). [Google Scholar]
- Kollias, K.-F.; Syriopoulou-Delli, C.K.; Sarigiannidis, P.; Fragulis, G.F. The Contribution of Machine Learning and Eye-Tracking Technology in Autism Spectrum Disorder Research: A Review Study. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST); IEEE, 2021; pp. 1–4. [Google Scholar]
- Kollias, K.-F.; Syriopoulou-Delli, C.K.; Sarigiannidis, P.; Fragulis, G.F. The Contribution of Machine Learning and Eye-Tracking Technology in Autism Spectrum Disorder Research: A Systematic Review. Electronics 2021, 10, 2982. [CrossRef] [Google Scholar]
- Manaswi, N.K.; Manaswi, N.K.; John, S. Deep Learning with Applications Using Python; Springer, 2018; [Google Scholar]
- Baby, C.J.; Khan, F.A.; Swathi, J.N. Home Automation Using IoT and a Chatbot Using Natural Language Processing. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT); April 2017; pp. 1–6. [Google Scholar]
- D’silva, G.M.; Thakare, S.; More, S.; Kuriakose, J. Real World Smart Chatbot for Customer Care Using a Software as a Service (SaaS) Architecture. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC); February 2017; pp. 658–664. [CrossRef] [Google Scholar]
- Kulkarni, C.S.; Bhavsar, A.U.; Pingale, S.R.; Kumbhar, S.S. BANK CHAT BOT – An Intelligent Assistant System Using NLP and Machine Learning. 04, 5. [Google Scholar]
- Su, M.-H.; Wu, C.-H.; Huang, K.-Y.; Hong, Q.-B.; Wang, H.-M. A Chatbot Using LSTM-Based Multi-Layer Embedding for Elderly Care. In Proceedings of the 2017 International Conference on Orange Technologies (ICOT); December 2017; pp. 70–74. [CrossRef] [Google Scholar]
- Patel, F.; Thakore, R.; Nandwani, I.; Bharti, S.K. Combating Depression in Students Using an Intelligent ChatBot: A Cognitive Behavioral Therapy. In Proceedings of the 2019 IEEE 16th India Council International Conference (INDICON); IEEE, 2019; pp. 1–4. [Google Scholar]
- Conneau, A.; Schwenk, H.; Barrault, L.; Lecun, Y. Very Deep Convolutional Networks for Text Classification. arXiv preprint arXiv:1606.01781 2016. [Google Scholar]
- Lee, M.-C.; Chiang, S.-Y.; Yeh, S.-C.; Wen, T.-F. Study on Emotion Recognition and Companion Chatbot Using Deep Neural Network. Multimedia Tools and Applications 2020, 79, 19629–19657. [CrossRef] [Google Scholar]
- Bengfort, B.; Bilbro, R.; Ojeda, T. Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning; O’Reilly Media, Inc., 2018; ISBN 978-1-4919-6299-2. [Google Scholar]
- Nadeau, D.; Sekine, S. A Survey of Named Entity Recognition and Classification. Lingvisticae Investigationes 2007, 30, 3–26. [CrossRef] [Google Scholar]
- Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation Classification via Convolutional Deep Neural Network. In Proceedings of the Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers; Dublin City University and Association for Computational Linguistics: Dublin, Ireland, August 2014; pp. 2335–2344. [Google Scholar]
- Nguyen, T.H.; Grishman, R. Relation Extraction: Perspective from Convolutional Neural Networks. In Proceedings of the Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing; Association for Computational Linguistics: Denver,Colorado, June 2015; pp. 39–48. [CrossRef] [Google Scholar]
- Question-Answer Dataset Available online: https://kaggle.com/rtatman/questionanswerdataset (accessed on 16 January 2022). [Google Scholar]
- Fragulis, G. F., Papatsimouli, M., Lazaridis, L., & Skordas, I. A. (2021). An Online Dynamic Examination System (ODES) based on open source software tools. Software Impacts, 7, 100046. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.