Open Access
Issue
SHS Web Conf.
Volume 139, 2022
The 4th ETLTC International Conference on ICT Integration in Technical Education (ETLTC2022)
Article Number 03029
Number of page(s) 5
Section Topics in Computer Science
DOI https://doi.org/10.1051/shsconf/202213903029
Published online 13 May 2022
  1. M.K. Islam, A. Rastegarnia, Z. Yang “Methods for artifact detection and removal from scalp EEG: a review”, Neurophysiol. Clin./Clin. Neurophysiol., 46 (4) (2016), pp. 287-305, 10.1016/j.neucli.2016.07.002 [CrossRef] [Google Scholar]
  2. L.J. Gabard-Durnam, A.S. Mendez Leal, C.L. Wilkinson, A.R. Levin The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front. Neurosci., 12 (2018), p. 12, 10.3389/fnins.2018.00097 [Google Scholar]
  3. R. Debnath, G.A. Buzzell, S. Morales, M.E. Bowers, S.C. Leach, N.A. Fox The Maryland analysis of developmental EEG (MADE) pipeline Psychophysiology, 57 (6) (2020), Article e13580, [Google Scholar]
  4. Velu Prabhakar, Kumaravelab, Elisabetta Farellaa, Eugenio Pariseb, Marco Buiattib, “NEAR: An artifact removal pipeline for human newborn EEG data”, https://doi.org/10.1016/j.dcn.2022.101068 [Google Scholar]
  5. Bigdely-Shamlo et al., 2015 N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, K.A. Robbins, “The PREP pipeline: standardized preprocessing for large-scale EEG analysis” Front. Neuroinform., 9 (June) (2015), pp. 1-20, 10.3389/fninf.2015.00016 [Google Scholar]
  6. A. Mognon, J. Jovicich, L. Bruzzone, M. Buiatti “ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features” Psychophysiology, 48 (2) (2011), pp. 229-240, 10.1111/j.1469-8986.2010.01061.x [CrossRef] [Google Scholar]
  7. H. Nolan, R. Whelan, R.B. Reilly, “FASTER: fully automated statistical thresholding for EEG artifact rejection” J. Neurosci. Methods, 192 (1) (2010), pp. 152-162, 10.1016/j.jneumeth.2010.07.015 [CrossRef] [Google Scholar]
  8. A. De Cheveigné, L.C. Parra "Joint decorrelation, a versatile tool for multichannel data analysis" NeuroImage, 98 (2014), pp. 487-505, 10.1016/j.neuroimage.2014.05.068 [CrossRef] [Google Scholar]
  9. A. de Cheveigné, D. Arzounian, “Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data”, NeuroImage, 172 (2018), pp. 903-912, 10.1016/j.neuroimage.2018.01.035. [CrossRef] [Google Scholar]
  10. M. Eisermann, A. Kaminska, M.-L. Moutard, C. Soufflet, P. Plouin, “Normal EEG in childhood: from neonates to adolescents”, Neurophysiol. Clin./Clin. Neurophysiol., 43 (1) (2013), pp. 35-65, 10.1016/j.neucli.2012.09.091 [CrossRef] [Google Scholar]
  11. Winkler, I., Debener, S., Müller, K., Tangermann, M., 2015. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. In: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4101–5. [Google Scholar]
  12. M. Eisermann, A. Kaminska, M.-L. Moutard, C. Soufflet, P. Plouin " Normal EEG in childhood: from neonates to adolescents", Neurophysiol. Clin./Clin. Neurophysiol., 43 (1) (2013), pp. 35-65, 10.1016/j.neucli.2012.09.091 [CrossRef] [Google Scholar]
  13. E. Kushnerenko, R. Ceponienė, P. Balan, V. Fellman, R. Näätänen, “Maturation of the auditory change detection response in infants: a longitudinal ERP study” Neuroreport, 13 (15) (2002), pp. 3-8 [Google Scholar]
  14. P.J. Marshall, Y. Bar-Haim, N.A. Fox, “Development of the EEG from 5 months to 4 years of age”, Clin. Neurophysiol., 113 (8) (2002), pp. 1199-1208 [CrossRef] [Google Scholar]
  15. C.A. Nelson, C.S. Monk, “The use of event-related potentials in the study of cognitive development”, Handbook of Developmental Cognitive Neuroscience, MIT Press [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.