Open Access
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 01017
Number of page(s) 5
Section Research on Bioethics and Medical Science and Technology Ethics
Published online 26 August 2022
  1. A. Abeliovich and A. Gitler. Defects in trafficking bridge Parkinson’s disease pathology and genetics [J]. Nature, 2016, 539(7628): 207-216. [CrossRef] [Google Scholar]
  2. A. Malpartida, M. Williamson, D. Narendra, et al. Mitochondrial Dysfunction and Mitophagy in Parkinson’s Disease: From Mechanism to Therapy [J]. Trends in biochemical sciences, 2021, 46(4): 329-343. [CrossRef] [Google Scholar]
  3. A. Manini, E. Abati, G. Comi, et al. Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance[J]. Ageing research reviews, 2022, 76: 101578. [CrossRef] [Google Scholar]
  4. D. Ho, D. Nam, M. Seo, et al. LRRK2 Inhibition Mitigates the Neuroinflammation Caused by TLR2Specific α-Synuclein and Alleviates Neuroinflammation-Derived Dopaminergic Neuronal Loss [J]. Cells, 2022, 11(5) [Google Scholar]
  5. E. Hogg, K. Athreya, C. Basile, et al. High Prevalence of Undiagnosed Insulin Resistance in Non-Diabetic Subjects with Parkinson’s Disease[J]. Journal of Parkinson’s disease, 2018, 8(2): 259-265. [CrossRef] [Google Scholar]
  6. M. Zhao, B. Wang, C. Zhang, et al. The DJ1-Nrf2STING axis mediates the neuroprotective effects of Withaferin A in Parkinson’s disease[J]. Cell death and differentiation, 2021, 28(8): 2517-2535. [CrossRef] [Google Scholar]
  7. A. Jo, Y. Lee, T. Kam, et al. PARIS farnesylation prevents neurodegeneration in models of Parkinson’s disease[J]. Science translational medicine, 2021, 13(604) [Google Scholar]
  8. R. Di Maio, E. Hoffman, E. Rocha, et al. LRRK2 activation in idiopathic Parkinson’s disease [J]. Science translational medicine, 2018, 10(451) [CrossRef] [Google Scholar]
  9. S. Novello, D. Mercatelli, F. Albanese, et al. In vivo susceptibility to energy failure parkinsonism and LRRK2 kinase activity[J]. Neurobiology of disease, 2022, 162: 105579. [CrossRef] [Google Scholar]
  10. J. Korecka, R. Thomas, A. Hinrich, et al. SpliceSwitching Antisense Oligonucleotides Reduce LRRK2 Kinase Activity in Human LRRK2 Transgenic Mice [J]. Molecular therapy. Nucleic acids, 2020, 21: 623-635. [CrossRef] [Google Scholar]
  11. A. Merola, N. Kobayashi, A. Romagnolo, et al. Gene Therapy in Movement Disorders: A Systematic Review of Ongoing and Completed Clinical Trials[J]. Frontiers in neurology, 2021, 12: 648532. [CrossRef] [Google Scholar]
  12. X. Ding and F. Ren. Leucine-rich repeat kinase 2 inhibitors: a patent review (2014-present) [J]. Expert opinion on therapeutic patents, 2020, 30(4): 275-286. [CrossRef] [Google Scholar]
  13. J. Bright, H. Carlisle, A. Toda, et al. Differential Inhibition of LRRK2 in Parkinson’s Disease Patient Blood by a G2019S Selective LRRK2 Inhibitor [J]. Movement disorders: official journal of the Movement Disorder Society, 2021, 36(6): 1362-1371. [CrossRef] [Google Scholar]
  14. D. Margolin, N. Brice, A. Davidson, et al. A Phase I, First-in-Human, Healthy Volunteer Study to Investigate the Safety, Tolerability, and Pharmacokinetics of CVN424, a Novel G ProteinCoupled Receptor 6 Inverse Agonist for Parkinson’s Disease [J]. The Journal of pharmacology and experimental therapeutics, 2022, 381(1): 33-41. [CrossRef] [Google Scholar]
  15. A. Barth, J. Schneider, T. Johnston, et al. NYX-458 Improves Cognitive Performance in a Primate Parkinson’s Disease Model[J]. Movement disorders : official journal of the Movement Disorder Society, 2020, 35(4): 640-649. [CrossRef] [Google Scholar]
  16. M. Rosebraugh, W. Liu, M. Neenan and M. Facheris. Foslevodopa/Foscarbidopa Is Well Tolerated and Maintains Stable Levodopa and Carbidopa Exposure Following Subcutaneous Infusion [J]. Journal of Parkinson’s disease, 2021, 11(4): 16951702. [Google Scholar]
  17. F. Sjöberg, S. Waters, B. Löfberg, et al. A first-inhuman oral dose study of mesdopetam (IRL790) to assess its safety, tolerability, and pharmacokinetics in healthy male volunteers[J]. Pharmacology research & perspectives, 2021, 9(3): e00792. [Google Scholar]
  18. C. Yang, W. Wang, P. Deng, et al. Fibroblast Growth Factor 21 Modulates Microglial Polarization That Attenuates Neurodegeneration in Mice and Cellular Models of Parkinson’s Disease[J]. Frontiers in aging neuroscience, 2021, 13: 778527. [CrossRef] [Google Scholar]
  19. S. Jeong, S. Chung, H. Yoo, et al. Beneficial effects of dipeptidyl peptidase-4 inhibitors in diabetic Parkinson’s disease[J]. Brain : a journal of neurology, 2021, 144(4): 1127-1137. [CrossRef] [Google Scholar]
  20. D. Schöndorf, D. Ivanyuk, P. Baden, et al. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease[J]. Cell reports, 2018, 23(10): 2976-2988. [CrossRef] [Google Scholar]
  21. B. Brakedal, C. Dölle, F. Riemer, et al. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease[J]. Cell metabolism, 2022, 34(3): 396-407.e6. [CrossRef] [Google Scholar]
  22. C. Christine, R. Richardson, A. Van Laar, et al. Safety of AADC Gene Therapy for Moderately Advanced Parkinson Disease: Three-Year Outcomes From the PD-1101 Trial[J]. Neurology, 2022, 98(1): e40-e50. [CrossRef] [Google Scholar]
  23. A. Unnisa, K. Dua and M. Kamal. Mechanism of mesenchymal stem cells as a multitarget diseasemodifying therapy for parkinson’s disease[J]. Current neuropharmacology, 2022 [Google Scholar]
  24. A. Boika, N. Aleinikava, V. Chyzhyk, et al. Mesenchymal stem cells in Parkinson’s disease: Motor and nonmotor symptoms in the early posttransplant period[J]. Surgical neurology international, 2020, 11: 380. [CrossRef] [Google Scholar]
  25. B. Mondal, S. Choudhury, R. Banerjee, et al. Noninvasive vagus nerve stimulation improves clinical and molecular biomarkers of Parkinson’s disease in patients with freezing of gait[J]. NPJ Parkinson’s disease, 2021, 7(1): 46. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.