Open Access
Issue
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 02009
Number of page(s) 6
Section Mobile Communication Technology and Prospects of Frontier Technology
DOI https://doi.org/10.1051/shsconf/202214402009
Published online 26 August 2022
  1. Imtiaz, Parvez, Ali, Rahmati, & Ismail, Guvenc, et al. (2018). A survey on low latency towards 5g: ran, core network and caching solutions. IEEE Communications Surveys & Tutorials. [Google Scholar]
  2. Li, C. P., Jing, J., Chen, W., Ji, T., & Smee, J., (2017). 5G ultra-reliable and low-latency systems design. 2017 European Conference on Networks and Communications (EuCNC). IEEE. [Google Scholar]
  3. Brunello, D., Ingemar, J. S., Ozger, M., & Cavdar, C., (2021). Low Latency Low Loss Scalable Throughput in 5G Networks. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021Spring). IEEE. [Google Scholar]
  4. Wang, C., Shen, J., Vijayakumar, P., Liu, Q., & Ji, S., (2021). Ultra-reliable secure data aggregation scheme with low latency for isolated terminals in 5g and beyond defined stins. Computer Standards & Interfaces (6), 103512. [CrossRef] [Google Scholar]
  5. Guan, X., Dube-Demers, R., Shi, W., & Rusch, L. A., (2021). Heterogeneous optical access networks: enabling low-latency 5g services with a silicon photonic smart edge. Journal of Lightwave Technology, PP(99), 1-1. [Google Scholar]
  6. Ciceri, O. J., Astudillo, C. A., Figueiredo, G. B., Zhu, Z., & Fonseca, N., (2021). Passive optical networking for 5g and beyond 5g low-latency mobile fronthauling services. [Google Scholar]
  7. Vu, T. K., Bennis, M., Liu, C., Debbah, M., & Latvaaho, M., (2018). Path selection and rate allocation for ultra-reliable and low latency 5g mmwave networks. IEEE. [Google Scholar]
  8. Do, D. T., Nguyen, T., Le, C. B., & Lee, J. W., (2020). Two-way transmission for low-latency and high-reliability 5g cellular v2x communications. Sensors (Basel, Switzerland), 20(2). [Google Scholar]
  9. Wang, C., Tang, H., Wei, Y., Wang, X., & Yuan, Q., (2018). A resource scheduling algorithm with low latency for 5g networks based on effective hybrid genetic algorithm and tabu search. Journal of Xi’an Jiaotong University. [Google Scholar]
  10. Kelvin, Chew, & Preetha, Thulasiramany. Adaptive 5G Low-Latency Communication for Tactile Internet Services. [Google Scholar]
  11. Srinivasulu, O., Implementation of Low Power, Signal Avilability, Network Coverage, Less Latency, Efficient Bandwidth 5G Technology Communication System. [Google Scholar]
  12. Beyranvand, H., M Lévesque, Maier, M., Salehi, J. A., Verikoukis, C., & Tipper, D., (2017). Toward 5g: fiwi enhanced lte-a hetnets with reliable lowlatency fiber backhaul sharing and wifi offloading. IEEE/ACM Transactions on Networking, 25(2), 690707. [CrossRef] [Google Scholar]
  13. Mikami, M., & Yoshino, H., (2019). Field trial on 5g low latency radio communication system towards application to truck platooning. IEICE Transactions on Communications, E102.B(8). [Google Scholar]
  14. Liu, Shaohan, & Dake. (2019). A high-flexible lowlatency memory-based fft processor for 4g, wlan, and future 5g. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(3), 511-523. [CrossRef] [Google Scholar]
  15. Ohta, A., (2017). Low latency ARQ scheme for Wireless entrance systems for 5G small cell base stations. [Google Scholar]
  16. Vannithamby, R., & Talwar, S., (2016). Towards 5g (applications, requirements and candidate technologies) || low-latency radio-interface perspectives for small-cell 5g networks., 10.1002/9781118979846, 275-302. [Google Scholar]
  17. Zhang, S., Xu, X., Wu, Y., & Lei, L., (2015). 5G: Towards energy-efficient, low-latency and highreliable communications networks. 2014 IEEE International Conference on Communication Systems. IEEE. [Google Scholar]
  18. Hashemi, M., Koksal, C. E., & Shroff, N. B., (2017). Hybrid RF-mmWave communications to achieve low latency and high energy efficiency in 5G cellular systems. 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE. [Google Scholar]
  19. Esswie, A. A., & Pedersen, K. I., (2018). Multi-user preemptive scheduling for critical low latency communications in 5g networks. IEEE. [Google Scholar]
  20. Vardakas, J. S., Monroy, I. T., Wosinska, L., Agapiou, G., & Verikoukis, C., (2017). Towards high capacity and low latency backhauling in 5G: The 5G STEP-FWD vision. 2017 19th International Conference on Transparent Optical Networks (ICTON). IEEE. [Google Scholar]
  21. Balevi, E., & Gitlin, R. D., (2017). Unsupervised machine learning in 5G networks for low latency communications. IEEE International Performance Computing & Communications Conference (pp. 1-2). IEEE Computer Society. [Google Scholar]
  22. Mehrdad, Moradi, Yikai, Lin, Z. Morley, et al. (2018). Softbox: a customizable, low-latency, and scalable 5g core network architecture. IEEE Journal on Selected Areas in Communications. [Google Scholar]
  23. Jin, R., Zhong, X., & Zhou, S., (2016). The Access Procedure Design for Low Latency in 5G Cellular Network. 2016 IEEE Globecom Workshops (GC Wkshps). IEEE. [Google Scholar]
  24. Nasrallah, A., Thyagaturu, A. S., Alharbi, Z., Wang, C., Shao, X., & Reisslein, M., et al. (2018). Ultralow latency (ull) networks: the ieee tsn and ietf detnet standards and related 5g ull research. IEEE Communications Surveys & Tutorials. [Google Scholar]
  25. Li, J., & Chen, J., (2020). Supporting Low-Latency Service Migration in 5G Transport Networks. Optical Fiber Communication Conference. IEEE. [Google Scholar]
  26. Heinonen, J., Korja, P., Partti, T., Flinck, H., & Poyhonen, P., (2016). Mobility management enhancements for 5G low latency services. 2016 ICC 2016 IEEE International Conference on Communications Workshops (ICC). IEEE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.