Open Access
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 02018
Number of page(s) 7
Section Mobile Communication Technology and Prospects of Frontier Technology
Published online 26 August 2022
  1. Daniel Slotta. (2021) Size of the smart manufacturing systems market in China from 2016 to 2019 with forecasts until 2025. [Google Scholar]
  2. O’Shea, K.T. and Nash, R. (2015). ‘An Introduction to Convolutional Neural Networks’, ArXiv e-prints. Available at: [Google Scholar]
  3. Khan, A., Sohail, A., Zahoora, U. et al. (2020). ‘A survey of the recent architectures of deep convolutional neural networks’, Artificial Intelligence Review, 53(8), pp. 5455-5516. [CrossRef] [Google Scholar]
  4. Hu, C. and Wang, Y. (2019). ‘An Efficient Convolutional Neural Network Model Based on Object-Level Attention Mechanism for Casting Defect Detection on Radiography Images’, IEEE Transactions on Industrial Electronics, 67(12), pp. 10922-10930. [Google Scholar]
  5. Xu, al.(2019), ‘SDD-CNN: Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection’, Applied Sciences, 9(7), p.1364. [CrossRef] [Google Scholar]
  6. Defard T. and Setkov A. and Loesch A. and Audigier R. (2021) PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization. In: Del Bimbo A. et al. (eds) Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, vol 12664. Springer, Cham. [Google Scholar]
  7. Tranfield, D. and Denyer, D. and Smart, P., (2003), ‘Towards a methodology for developing evidenceinformed management knowledge by means of systematic review’, British Journal of Management, 14(3), pp. 207-222. [CrossRef] [Google Scholar]
  8. Bouvrie, J.V. (2006). ‘Notes on Convolutional Neural Networks’, Computer Science. [Google Scholar]
  9. Lee, C. et al (2016). ‘Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree’, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 51, pp. 464–472 [Google Scholar]
  10. Albawi, S., Mohammed, T.A., and Al-Zawi, S. “Understanding of a convolutional neural network, ” 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186. [Google Scholar]
  11. Mateusz Buda, M. et al (2018), ‘A systematic study of the class imbalance problem in convolutional neural networks’, Neural Networks, 106, pp.249-259. [CrossRef] [Google Scholar]
  12. Garcia, J. and Barbedo, A.(2018) ‘Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification’, Computers and Electronics in Agriculture, Volume 153, 2018, pp. 46-53. [CrossRef] [Google Scholar]
  13. Kamilaris, A. and Prenafeta-Boldú, F.X., 2018.’ Deep learning in agriculture: a survey: A Survey. Computers and Electronics in Agriculture’, Computers and Electronics in Agriculture, 147, pp. 70–90. [CrossRef] [Google Scholar]
  14. Japkowicz, N., and Stephen, S. (2002). ‘The class imbalance problem: A systematic study’, Intelligent Data Analysis, 6(5), 429–449. [CrossRef] [Google Scholar]
  15. LeCun, Y. and Bottou, L., Bengio, Y.and Haffner, P. (1998). ‘Gradient-based learning applied to document recognition’, Proceedings of the IEEE, 86(11), pp. 2278-2324. [CrossRef] [Google Scholar]
  16. Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. [Google Scholar]
  17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), pp. 211–252. [CrossRef] [MathSciNet] [Google Scholar]
  18. Hu, C. and Wang, Y. (2019) Overall framework of the proposed method [Image]. IEEE Transactions on Industrial Electronics: Institute of Electrical and Electronics Engineers. [Google Scholar]
  19. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. “Learning deep features for discriminative localization, ” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016. [Google Scholar]
  20. Defard T. and Setkov A. and Loesch A. and Audigier R. (2021) For each image patch corresponding to position (i, j) in the largest CNN feature map, PaDiM learns the Gaussian parameters (μij, Σij) from the set of N training embedding vectors Xij = {xkij, k ϵ ⟦[1, N⟧} computed from N different training images and three differentb pretrained CNN layers. (Color figure online) [Image]. The International Association for Pattern Recognition: Springer, Cham. [Google Scholar]
  21. Mahalanobis, P. C. (1936), ’On the generalized distance in statistics’, Proceedings of the National Institute of Sciences (Calcutta) 2, pp. 49-55. [Google Scholar]
  22. Xu, X. et al. (2019). Figure 1. Framework and flowchart of proposed small data-driven convolution neural network (SDD-CNN) for roller defect inspection [Image]. Applied Sciences: MDPI [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.