Open Access
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 03004
Number of page(s) 5
Section Application of Artificial Intelligence Technology and Machine Learning Algorithms
Published online 26 August 2022
  1. Wang Xq, Zeng H, Han Dm, Liu Y, Lu F, Spiking neural network-based brain-like computing, JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY [Google Scholar]
  2. Zhang Tl, Xu B. Research Advances and Perspectives on Spiking Neural Networks. CHINESE JOURNAL OF COMPUTERS, 2021, 44(9): 1767-1785. [DOI: 10.11897/SP.J.1016.2021.01767]. 45(12): 1278-1286. [DOI: 10.11936/bjutxb2018100018]. [Google Scholar]
  3. Yu S. From Brain Networks to Artificial Intelligence-Opportunities and Challenges of Brain-Like Computing. SCIENCE AND TECHNOLOGY REVIEW, 2016, 34(7): 75-77. [Google Scholar]
  4. Huang TJ, Yu ZF, Liu YJ. Brain G like Machine: Thought and Architecture. Journal of Computer Research and Development, 2019, 56(6): 1135-1148. [DOI:10.7544/issn1000-1239.2019.20190240] [Google Scholar]
  5. Mcculloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133. [CrossRef] [Google Scholar]
  6. Rosenblatt F. The perceptron, a perceiving and recognizing automaton project para. Cornell Aeronautical Laboratory, 1957. [Google Scholar]
  7. Hinton G E, Sejnowski T J. Optimal perceptual inference // Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C, USA, 1983. [Google Scholar]
  8. Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536. [CrossRef] [Google Scholar]
  9. Lecun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541-551 [CrossRef] [Google Scholar]
  10. Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527-1554. [CrossRef] [Google Scholar]
  11. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. Communications of the Acm, 2017, 60(6): 84-90. [CrossRef] [Google Scholar]
  12. Hu YF, Li GQ, Wu YJ, et al. A review of research progress on impulsive neural networks [J]. Control and Decision Making, 2021, 36(1): 1-26. [Google Scholar]
  13. Zhang HG, XU GZ 1, GUO JR, GUO L. Brain-like pulsed neural networks and their neuromorphic chips Research Review. Journal of Biomedical Engineering, 2021, 38(5): 986-994. [Google Scholar]
  14. Xu LF, Li CD, Chen L. Contrastive analysis of neuron model. Acta Physica Sinica, 2016, 65(24): 240701-1240701-12. [DOI: 10.7498/aps.65.240701]. [Google Scholar]
  15. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117(4): 500-544. [CrossRef] [Google Scholar]
  16. Huang T J, Shi L P, Tang H J, Pan G, Chen Y J, Yu J Q. Research on multimedia technology 2015— advances and trend of brain-like computing [J]. Journal of Image and Graphics, 2016, 21(11): 1411-1424. [DOI: 10.11834/jig.20161101]. [Google Scholar]
  17. Hopfield J J. Pattern recognition computation using action potential timing for stimulus representation [J]. Nature, 2002, 376 (6535): 33-36. [DOI: 10.1038/376033a0] [Google Scholar]
  18. Georgopoulos A P, Schwartz A B, Kettner R E. Neuronal population coding of movement direction[J]. Science, 1986, 233(4771): 1416-1419. [CrossRef] [Google Scholar]
  19. Cao Y Q, Chen Y, Khosla D. Spiking deep convolutional neural networks for energy-efficient object recognition [J]. International Journal of Computer Vision, 2015, 113(1): 54-66. [DOI: 10.1007 /s11263-014-0788-3]. [CrossRef] [Google Scholar]
  20. Bohte S M, Kok J N, Poutr’e H L. SpikeProp: backpropagation for networks of spiking neurons [C]//The of 8th European Symposium on Artificial Neural Networks, Bruges, Belgium, 200 [Google Scholar]
  21. Benjamin B V, Gao P, McQuinn E, et al. Neurogrid: A mixed-analog-digital multichip system for largescale neural simulations[J]. Proceedings of the IEEE, 2014, 102(5): 699-716 [CrossRef] [Google Scholar]
  22. Schemmel J, Brüderle D, Grübl A, et al. A waferscale neuromorphic hardware system for large-scale neural modeling[C]. 2010 IEEE International Symposium on Circuits and Systems. Paris: IEEE, 2010: 1947-1950. [CrossRef] [Google Scholar]
  23. Davies M, Srinivasa N, Lin T H, et al. Loihi: A neuromorphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38(1): 82-99. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.