Open Access
SHS Web Conf.
Volume 155, 2023
2022 2nd International Conference on Social Development and Media Communication (SDMC 2022)
Article Number 03011
Number of page(s) 6
Section Intelligent Social Change and Women's Artistic Expression
Published online 12 January 2023
  1. Adhikari, K., & Panda, R. K. (2018). Users' Information Privacy Concerns and Privacy Protection Behaviors in Social Networks. Journal of Global Marketing, 31(2) 96–110. [CrossRef] [Google Scholar]
  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2) 179–211. [CrossRef] [Google Scholar]
  3. Alashor, T., Han, S., & Joseph, R. C. (2017). Familiarity with Big Data, Privacy Concerns, and Self-disclosure Accuracy in Social Networking Websites: An APCO Model. Communications of the Association for Information Systems, 41, pp-pp. [Google Scholar]
  4. Altman, I. (1975). The Environment and Social Behavior: Privacy, Personal Space, Territory, and Crowding. Monterey. [Google Scholar]
  5. Baker, R. K., & White, K. M. (2010). Predicting adolescents’ use of social networking sites from an extended theory of planned behaviour perspective. Computers in Human Behavior, 26(6) 1591–1597. [CrossRef] [Google Scholar]
  6. Baruh, L., & Popescu, M. (2017). Big data analytics and the limits of privacy self-management. New Media & Society, 19(4) 579–596. [CrossRef] [Google Scholar]
  7. BBC (2018, October 1), Facebook security breach: up to 50m accounts attacked, [Google Scholar]
  8. Brandtzaeg, P. B., Luders, M. & Skjetne, J. H. (2010). Too Many Facebook “Friends”? Content Sharing and Sociability Versus the Need for Privacy in Social Network Sites. International Journal of HumanComputer Interaction, 26(11-12), 1006–1030. [CrossRef] [Google Scholar]
  9. Heirman, W., Walrave, M., & Ponnet, K. (2013). Predicting adolescents’ disclosure of personal information in exchange for commercial incentives: an application of an extended theory of planned behavior. Cyberpsychology, Behavior, and Social Networking, 16(2). [Google Scholar]
  10. Ho, S. S., Lee, E. W. J., Lwin, M. O., & Yee, A. Z. H. (2017). Understanding Factors Associated with Singaporean Adolescents’ Intention to Adopt Privacy Protection Behavior Using an Extended Theory of Planned Behavior. Cyberpsychology Behavior, and Social Networking, 20(9) 572–579. [CrossRef] [Google Scholar]
  11. D. Laney. (2001). 3D data management: Controlling data volume, velocity, and variety, META group research note, 6(70) 1. [Google Scholar]
  12. Milne, G. R., Labrecque, L. I., & Cromer, C. (2009). Toward an understanding of the online consumer’s risky behavior and protection practices. Journal of Consumer Affairs, 43(3) 449–473. [CrossRef] [Google Scholar]
  13. Mosteller, J., & Poddar, A. (2017). To Share and Protect: Using Regulatory Focus Theory to Examine the Privacy Paradox of Consumers' Social Media Engagement and Online Privacy Protection Behaviors. Journal of Interactive Marketing, 39(1) 27–38. [CrossRef] [Google Scholar]
  14. Pelling, E. L., & White, K. M. (2009). The theory of planned behavior applied to young people’s use of social networking web sites. Cyberpsychology & Behavior, 12(6) 755–759. [CrossRef] [Google Scholar]
  15. Yap, J. E., Beverland, M. B. & Bove, L. L. (2012), “Doing Privacy”: Consumers Search for Sovereignty through Privacy Management Practices. Research in Consumer Behavior, 14, 171–190. [CrossRef] [Google Scholar]
  16. Yu, S. (2016). Big Privacy: Challenges and Opportunities of Privacy Study in the Age of Big Data. IEEE Access, 4, 2751–2763. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.