Open Access
Issue
SHS Web Conf.
Volume 158, 2023
2nd International Academic Conference on Public Art and Human Development (ICPAHD 2022)
Article Number 01005
Number of page(s) 5
Section Public Art and Spatial Form Design
DOI https://doi.org/10.1051/shsconf/202315801005
Published online 13 February 2023
  1. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 1977, 74(12): 5463-7 [Google Scholar]
  2. Mitra RD, Church GM. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res, 1999, 27(24): 34-9 [Google Scholar]
  3. Shendure J, Porreca GJ, Reppas NB, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 2005, 309 (5471): 1728-32 [Google Scholar]
  4. Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376-80 [Google Scholar]
  5. Li Jixia, Gong Yanwen, Zhang Yuee, et al. The identification ability of pyrosequencing technology was evaluated by VITEK2Compact system for rare clinical pathogens with low accuracy[J]. Biomedical Engineering and Clinical, 2016, 20 (6) :626-630. [Google Scholar]
  6. Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133-41 [Google Scholar]
  7. http://www.454.com. [Google Scholar]
  8. Fedurco M, Romieu A, Williams S, et al. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res, 2006, 34: e22 [Google Scholar]
  9. Turcatti G, Romieu A, Fedurco M. et al. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res, 2008, 36(4): e25 [Google Scholar]
  10. Deurenberg R H, Bathoorn E, Chlebowicz M A, et al. Application of next generation sequencing in clinical microbiology and infection prevention[J]. J Biotechnol, 2017, 243, 16-24 [CrossRef] [Google Scholar]
  11. Smith DR, Quinlan AR, Peckham HE, et al. Rapid whole-genome mutational profiling using nextgeneration sequencing technologies. Genome Res, 2008, 18 (10) : 1638-42 [CrossRef] [Google Scholar]
  12. Zhou Xiaoguang, Ren Lufeng, Li Yuntao, et al. Next Generation Sequencing: Technology Review and prospects. China science, 2010, 40(1): 23-37 [Google Scholar]
  13. Liu L, Li Y, Li S, et al. Comparison of next generation sequencing systems[J]. J Biomed Biotchnol, 2012, 2012:251-364 [Google Scholar]
  14. Egger G, Liang C, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429 (6990) : 457-63. [Google Scholar]
  15. Bird A. Perceptions of epigenetics. Nature, 2007, 447 (7143) : 396-8. Bender J. DNA methylation and epigenetics. Annu Rev Plant Biol, 2004, 55: 41-68. [Google Scholar]
  16. Paszkowski J, Whitham SA. Gene silencing and DNA methylation processes. Curr Opin Plant Biol, 2001, 4(2) : 123-9. [CrossRef] [Google Scholar]
  17. Yang Xu, Jiao Rui, Yang Lin, et al. Human diseaseomics research strategies based on next-generation high-throughput technologies. Genetic, 2011, 33(8): 829-46 [Google Scholar]
  18. Cokus SJ, Feng SH, Zhang XY, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 2008, 452: 215-9 [Google Scholar]
  19. Lister R, Pellzzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462 (7271): 315-22 [Google Scholar]
  20. Turcot V, Bouchard L, Faucher G, et al. DPP4 gene DNA methylation in the omentum is associated with its gene exPression and plasma lipid profile in severe obesity. Obesity, 2011, 19(2): 388-95 [Google Scholar]
  21. Li Y, Zhu J, Tian G, et al. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol, 2010, 8(11): e1000533 [Google Scholar]
  22. Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res, 2005, 33(18): 5868-77 [Google Scholar]
  23. Smith ZD, Gu HC, Bock C, et al. High-throughput bisulfite sequencing in mammalian genomes. Methods, 2009, 48(3): 226-32 [Google Scholar]
  24. Gu HC, Bock C, Mikkelsen TS, et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods, 2010, 7(2): 133-6 [Google Scholar]
  25. Smallwood S, Tomizawa S, Krueger F, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet, 2011, 43: 811-5 [Google Scholar]
  26. Nair SS, Coolen MW, Stirzaker C, et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methylCpG binding domain(MBD) protein capture for genomewide DNA methylation analysisreveal CpG sequence coverage bias. Epigenetics, 2011, 6(1): 34-4 [CrossRef] [Google Scholar]
  27. Ruike Y, Imanaka Y, Sato F, et al. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics, 2010, 11(1): 137-47 [CrossRef] [Google Scholar]
  28. O’Neill LP, Turner BM. Immunoprecipitation of chromatin. Methods Enzymol, 1996, 274: 189-97. [Google Scholar]
  29. Li Minli, Wang Wei, Lu Zuhong. ChIP technology and its analysis of DNA and protein interactions at the genomic level. Genetic, 2010, 32(3), 219-228. [Google Scholar]
  30. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet, 2009, 10(10): 669-80 [Google Scholar]
  31. Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129(4): 823-37 [CrossRef] [Google Scholar]
  32. Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineagecommitted cells. Nature, 2007, 448(7153): 553-60 [Google Scholar]
  33. He HH, Meyer CA, Shin H, et al. Nucleosome dynamics define transcriptional enhancers. Nat Genet, 2010, 42(4): 343-7 [Google Scholar]
  34. Hurtado A, Holmes KA, Ross-Innes CS, et al. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet, 2011, 43(1): 27-33 [Google Scholar]
  35. Lister R, Ecker J R. Finding the fifth base: Genome-wide sequencing of cytosine methylation[J]. Genome Res, 2009, 19(6) : 959-966. [CrossRef] [Google Scholar]
  36. Zhang Xiaoli. Genome-wide methylation of superficial and deep dorsal adipose tissue in pigs[D]. Yan’an: Sichuan Agricultural University, 2013. [Google Scholar]
  37. Sun H, Wu J J, Wick Ramasinghe P, et al. Genome-wide mapping of RNA Pol-IIpromoter usage in mouse tissues by ChIP-Seq[J]. Nucleic Acids Res, 2011, 39(1) : 190-01. [Google Scholar]
  38. Van Dijk E L, Jaszczyszyn Y, De Thermes C. Library preparation methods for next generation sequencing: tone down the bias[J]. Exp Cell Res, 2014, 322(1):12-20 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.