Open Access
Issue |
SHS Web of Conf.
Volume 166, 2023
2022 International Conference on Education Innovation and Modern Management (EIMM 2022)
|
|
---|---|---|
Article Number | 01068 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/shsconf/202316601068 | |
Published online | 05 May 2023 |
- HOU Xiaogang,CHEN Hong, & ZHAO Haiying (2019). The national costume pattern elements segmentation by incorporating morphology connected component and CVmodel. Journal of Zhejiang University(Science Edition),46(3), 288–294.(in chinese). [Google Scholar]
- WANG Hui (2020). Elements Extraction of Apparel Patterns Based on Contrast and GrabCut Algorithm. Zhejiang Sci-Tech University.(in chinese). [Google Scholar]
- ZHAO Lei (2021). Research on Traditional Ethnic Pattern Image Segmentation Algorithm Based on Saliency Detection. Beijing University of Posts and Telecommunications.(in chinese). [Google Scholar]
- J.R. Jebadass, & P. Balasubramaniam (2022). Low contrast enhancement technique for color images using interval-valued intuitionistic fuzzy sets with contrast limited adaptive histogram equalization. Soft Computing,26 (10),1–12. [Google Scholar]
- C. Wei, W. Wang, W. Yang, & J. Liu (2018). Deep Retinex Decomposition for Low-Light Enhancement. BMVC,1–12. [Google Scholar]
- K.G. Lore, A. Akintayo, & S. Sarkar (2017). LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognition, 61(6),650–662. [CrossRef] [Google Scholar]
- K. He, X. Zhang, S. Ren, & J. Sun (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. [Google Scholar]
- C. Li, J. Guo, F. Porikli, & Y. Pang (2018). LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement. Pattern Recognition Letters, 104, 15–22. [CrossRef] [Google Scholar]
- C. Li, C. Guo, L. Han, J. Jiang, M. Cheng, J. Gu, & C.C. Loy (2021). Low-Light Image and Video Enhancement Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–20. [Google Scholar]
- F. Lv, F. Lu, J. Wu, & C. Lim (2018). MBLLEN: Low-Light Image/Video Enhancement Using CNNs. BMVC, 220,1–13. [Google Scholar]
- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P.V. Fua, & S. Süsstrunk (2012). SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282. [CrossRef] [Google Scholar]
- T. Ojala, M. Pietikäinen, & T. Mäenpää (2002). Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24(7), 971–987. [CrossRef] [Google Scholar]
- S. Han, W. Tao, D. Wang, X. Tai, & X. Wu (2009). Image Segmentation Based on GrabCut Framework Integrating Multiscale Nonlinear Structure Tensor. IEEE Transactions on Image Processing, 18(10), 2289–2302. [CrossRef] [Google Scholar]
- C. Rother, V. Kolmogorov, & A. Blake (2004). “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics,23(3),309–314. [CrossRef] [Google Scholar]
- M. Mukhiddinov, R. Jeong, & J. Cho (2020). Saliency cuts: salient region extraction based on local adaptive thresholding for image information recognition of the visually impaired. Int. Arab J. Inf. Technol., 17(5), 713–720. [Google Scholar]
- P.F. Felzenszwalb, & D.P. Huttenlocher (2004). Efficient Graph-Based Image Segmentation. International Journal of Computer Vision, 59(2), 167–181. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.