Open Access
SHS Web of Conf.
Volume 166, 2023
2022 International Conference on Education Innovation and Modern Management (EIMM 2022)
Article Number 01071
Number of page(s) 13
Published online 05 May 2023
  1. Donoho D L. Compressed sensing. Information Theory, IEEE Transactions on, 52, 4 (2006). [CrossRef] [Google Scholar]
  2. Keying W, Xiaoyong G. Compressive sensing of digital sparse signals. Wireless Communications and Networking Conference (WCNC), (2011). [Google Scholar]
  3. Qaisar, S., Bilal, R.M., Iqbal, W., et al. Compressive sensing: From theory to applications, a survey. Communications and Networks, Journal of, 15, 5 (2013). [Google Scholar]
  4. Candes, E., Becker, S. Compressive sensing: Principles and hardware implementations. ESSCIRC (ESSCIRC), 2013 Proceedings of the, (2013). [Google Scholar]
  5. Qi-Fan Yang, Ke Fang, Yong-Jun Xie. Research on the Relation between the Number of Measurements and Signal Sparsity in Compressed Sensing. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), (2018). [Google Scholar]
  6. Yuchen Shi, Pingyi Fan, Zheqi Zhu, et al. MIM-CS: Message Importance Measure for Compressed Sensing. 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), (2021). [Google Scholar]
  7. Jiaqi Sun;Wenrui Dai, Chenglin Li, Junni Zou, et al. Compressive Sensing via Unfolded ℓ0-constrained Convolutional Sparse Coding. 2021 Data Compression Conference (DCC), (2021). [Google Scholar]
  8. van den Berg E, Friedlander M P. Theoretical and Empirical Results for Recovery From Multiple Measurements. Information Theory, IEEE Transactions on, 56, 5 (2010). [Google Scholar]
  9. Blanchard, J.D., Cermak, M., Hanle, D., et al.. Greedy Algorithms for Joint Sparse Recovery. Signal Processing, IEEE Transactions on, 62, 7 (2014) [Google Scholar]
  10. Deepa, K G, Ambat, Sooraj K., Hari, K.V.S.. Modified greedy pursuits for improving sparse recovery. Communications (NCC), 2014 Twentieth National Conference on, (2014). [Google Scholar]
  11. Mishali M, Eldar Y C. Blind Multiband Signal Reconstruction: Compressed Sensing for Analog Signals. Signal Processing, IEEE Transactions on, 57, 3 (2009). [Google Scholar]
  12. Majumdar A, Ward R K, Aboulnasr T. Algorithms to Approximately Solve NP Hard Row-Sparse MMV Recovery Problem: Application to Compressive Color Imaging. Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 2, 3 (2012). [Google Scholar]
  13. Xinquan Gao, Xuewei Wang, Jinglin Zhou. A Robust Orthogonal Matching Pursuit Based on L1 Norm. 2020 Chinese Control And Decision Conference (CCDC), (2020). [Google Scholar]
  14. Blumensath T, Davies M E. Gradient Pursuits. Signal Processing, IEEE Transactions on, 56, 6 (2008). [Google Scholar]
  15. Blumensath T, Davies M E. Stagewise Weak Gradient Pursuits. Signal Processing, IEEE Transactions on, 57, 11 (2009). [Google Scholar]
  16. Iliadis, M., Watt, J., Spinoulas, L., et al. Video compressive sensing using multiple measurement vectors. Image Processing (ICIP), 2013 20th IEEE International Conference on, (2013). [Google Scholar]
  17. Mishali M, Eldar Y C. From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals. Selected Topics in Signal Processing, IEEE Journal of, 4, 2 (2010). [Google Scholar]
  18. Hassan Mortada, Olivier Rabaste, Jonathan Bosse. Structured dictionary optimization: application to the modulated wideband converter. 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.