Open Access
Issue |
SHS Web of Conf.
Volume 166, 2023
2022 International Conference on Education Innovation and Modern Management (EIMM 2022)
|
|
---|---|---|
Article Number | 01073 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/shsconf/202316601073 | |
Published online | 05 May 2023 |
- K. L. Tang. Soil and Water Conservation in China[M]. Beijing: Science Press. (2004) [Google Scholar]
- T. J. Li, G. Q. Wang, C. Zhang, et al. Simulation of gravitational erosion in river basins on loess plateau[J]. Journal of Tianjin University, 41(9): 6. (2008) [Google Scholar]
- J. S. Yang, W. Y. Yao, S. B. Ma, et al. Analysis on the small gravitational erosion factors in gully region of the loess plateau[J]. Research of Soil and Water Conservation, 17(6): 4. (2010) [Google Scholar]
- J. S. Yang, W. Y. Yao, M. G. Zheng, et al. Analysis on gravitational sediment yield in the check-dam controlled basins of Chabagou Watershed[J]. Journal of Hydraulic Engineering, 48(2): 5. (2017) [Google Scholar]
- Z. Gao, F. Zhang, J. E. Gao, et al. Analysis and prediction of gravity erosion in typical small watershed in the fifthsub-region of huangtu hilly area[J]. Journal of Soil and Water Conservation, 32(3): 7. (2018) [Google Scholar]
- C. D. Gao, W. Q. Yao, P. F. Li, et al. Research progress of gravity erosion of the loess plateau[J]. Yellow River, 42(6): 7. (2020) [Google Scholar]
- H. Xue, W. C. Wang, P. H. He. Analysis on affecting factors of gravity erosion of the middle Yellow River region[J]. Yellow River, 30(5): 3. (2008) [Google Scholar]
- W. X. Lin, L. Q. Tang, D. B. Liu, et al. Gravitational erosion process and its simulation study progresses[J]. Water Resources and Hydropower Engineering, 42(1): 5. (2011) [Google Scholar]
- F. L. Zheng. A research on method of measuring rill erosion amount[J]. Bulletin of Soil and Water Conservation, (04): 41–45+49. (1989) [Google Scholar]
- J. S. Yang, W. Y. Yao, L. L. Wang. Study on the regularity and mechanism of gravity erosion in the loess gully[J]. Yellow River, 36(06): 93–96. (2014) [Google Scholar]
- J. J. Gao, Q. S. Ai, L. Q. Han, et al. An observation-based dataset of gravity erosion of Xindiangou watershed in the first sub-region of Loess Hilly-Gully Region during 2017–2018[J]. China Scientific Data, 6(03): 113–120. (2021) [Google Scholar]
- P. Zhang, F. L. Zheng, B. Wang, et al. Comparative study of monitoring gully erosion morphology change process by using high precision GPS, leica HDS 3000 laser scanner and needle board method[J]. Bulletin of Soil and Water Conservation, (05): 11–15+20. (2008) [Google Scholar]
- J. Zhang, F. L. Zheng, L. L. Wen, et al. Methodology of dynamic monitoring gully erosion process using 3D laser scanning technology[J]. Bulletin of Soil and Water Conservation, 31(06): 89–94. (2011) [Google Scholar]
- C. Qin. Quantitative researches on rill development on loessial hillslope based on photogrammetry[D]. Northwest A&F University.(2018) [Google Scholar]
- Y. Y. Huo, S. F. Wu, H. Feng, et al. Dynamic process of slope rill erosion based on three-dimensional laser scanner[J]. Science of Soil and Water Conservation, 9(02): 32–37+46. (2011) [Google Scholar]
- X. K. Zhao, J. G. Gong, Z. Ren, et al. Experimental study on morphological evolution of rills on dark loessial soil slope[J]. Water Resources and Hydropower Engineering, 51(02): 205–212. (2020) [Google Scholar]
- J. J. Gao, Q. S. Ai, L. D. Hao, et al. Research on influencing factors of gravity erosion based on UAV technology[J]. Yellow River, 42(10): 100–103. (2020) [Google Scholar]
- Liao K T, Y. J. Song, J. Yang, et al. The extraction of rill erosion parameters on red soil slope[J]. Soil and Water Conservation in China, (02): 45–49+69. (2021) [Google Scholar]
- X. Z. Xu, S. F. Wang, C. Zhao. Method to quantificationally measure the amount of gravitational erosion of the gully wall in the laboratory study[J]. Yellow River, 34(10): 20. (2012) [Google Scholar]
- M. H. Guo, H. J. Shi, J. Zhao, et al. Digital close range photogrammetry for the study of rill development at flume scale[J]. Catena, 143. (2016) [Google Scholar]
- Y. M. Jiang, H. J. Shi, Z. M. Wen, et al. The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions[J]. Geomorphology, 2020, 350(C). [Google Scholar]
- J. S. Yang, Zheng M. G, W. Y. Yao, et al. Landscape factors of gravity erosion in loess gully[J]. Soil and Water Conservation in China, (08): 42–45+69. (2014) [Google Scholar]
- Q. Yan. Simulation of gravitational erosion in the loess gully wall based on various rainfall condition[D]. Dalian University of Technology. (2013) [Google Scholar]
- Z. Y. Liu. Gravity erosion on the steep loess slope: Behavior, trigger and sensitivity[D]. Dalian University of Technology. (2016) [Google Scholar]
- X. Z. Xu, C. Zhao. A Laboratory Study for Gravity Erosion of the Steep Loess Slopes under Intense Rainfall[C]//ICHE 2014. Proceedings of the 11th International Conference on Hydroscience & Engineering. 2014: 709–716. [Google Scholar]
- X. Z. Xu, Z. Y. Liu, P. Q. Xiao, et al. Gravity erosion on the steep loess slope: Behavior, trigger and sensitivity[J]. CATENA, 135: 231–239.(2015) [CrossRef] [Google Scholar]
- S. H. Sun, S. Z. Zhang, F. Zhang. Gravitation erosion and its prevention measures in Zhonggou watershed [J]. Soil and Water Conservation in China, (09): 25–27+50+61–62. (1995) [Google Scholar]
- G. H. Zhang, Research on soil erosion under the background of vegetation restoration needs to be strengthened[J]. Soil and Water Conservation in China, (09): 76–79. (2020) [Google Scholar]
- H. Gao, X. Z. Xu, P. Q. Xiao, et al. Effects of vegetation on scale and rate of gravity erosion on the gully sidewall under heavy rainfalls[J]. Research of Soil and Water Conservation, 28(06): 17–24. (2021) [Google Scholar]
- X. Y. Zhao, X. Z. Xu, Y. Z. Jiang, et al. Effects of vegetation for gravity erosion on the loess gully sidewall under the intense rainfalls[J]. Journal of Soil and Water Conservation, 34(01): 58–63. (2020) [Google Scholar]
- X. Y. Zhao. Effects of vegetation on gravity erosion on the gully wall under the intense rainfall[D]. Dalian University of Technology. (2018) [Google Scholar]
- J. Y. Jiao, Z. J. Wang, Y. H. Wei, et al. Characteristics of erosion sediment yield with extreme rainstorms in Yanhe Watershed based on field measurement[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(13): 159–167. (2017) [Google Scholar]
- Z. J. Wang. Characteristics of vegetation and erosion sediment yield in the Yanhe[D]. Watershed University of Chinese Academy of Sciences. (2014) [Google Scholar]
- H. Xue, P. H. He, W. L. Wang. Studv on relations between river system shaping and gravity erosion of topography of the middle Yellow River[J]. Yellow River, (09): 67–68+70+108. (2008) [Google Scholar]
- Z. B. Xin, J. X. Xu, Y. X. Ma. Hypsometric integral analysis and its sediment yield implications in the loess plateau, China[J]. Journal of Mountain Science, (03): 356–363. (2008) [Google Scholar]
- H. Y. Wang, W. Q. Liu, Q. Q. Zhan. Quantitative analysis of landform development in the typical small watershed in Loess Plateau Based on Geographic Information System[J]. Journal of Xi’an University of Science and Technology, 34(02): 210–215. (2014) [Google Scholar]
- C. Zhao. A laboratory study on the gravitational erosion of loess gully[D]. Dalian University of Technology. (2011) [Google Scholar]
- S. F. Wang. Mechanism analysis of the gravitational erosion from the gully wall on the loess plateau[D]. Dalian University of Technology. (2018) [Google Scholar]
- L. Yu, X. Z. Xu, M. S. Zhang, et al. Sensitivity analysis of gravity erosion to topography factors on the loess plateau, China[J]. Journal of Soil and Water Conservation, 33(04): 119–125. (2019) [Google Scholar]
- L. Yu. Characteristics and sensitivities of the gravity erosion on the loess plateau, China[D]. Dalian University of Technology. (2019) [Google Scholar]
- S. J. Dong. Spatial and temporal distribution of gravity erosion on loess gully sidewall [D]. Dalian University of Technology. (2021) [Google Scholar]
- Y. L. Ma, X. Z. Xu, P. Q. Xiao, et al. Geomorphic natural hazard on loess terrain: expansion on the gully sidewall[J]. Natural Hazards, 109(3): 2535–2555. (2021) [CrossRef] [Google Scholar]
- H. Tang, X. S. Zhao, F. Song. Types and spatio-temporal distribution of landslides in the area effected by “5·12” Wenchuan earthquake in Shaanxi province—a case study in Lueyang country[J]. The Chinese Journal of Geological Hazard and Control, 26(01): 9–15. (2015) [Google Scholar]
- H. Zhou, Y. Zhang, QIN Q, et al. Research on variability of basic physical properties of loess under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 37(01): 162–168. (2015) [Google Scholar]
- W. Y. Yao, C. M. Li, P. Zhang, et al. Prospect and research on the erosion mechanism of pisha sandstone[J]. Yellow River, 40(06): 1–7+65. (2018) [Google Scholar]
- L. Z. Yang, G. F. Wang, A. J. Wang, et al. Landslides mechanization in the loess hilly area of eastern Gansu province—case study in Huan county[J]. The Chinese Journal of Geological Hazard and Control, 27(02): 39–48. (2016) [Google Scholar]
- W. S. He, Q. Xu, C. C. Liu. Ground deformation in Heifangtai loess yuan[J]. Journal of East China Institute of Technology(Natural Science Edition), 33(03): 281–285+289. (2010) [Google Scholar]
- L. Xu, H. J. Li, D. X. Wu. Discussion on infiltration of surface water and their significance to terrace loess landslides[J]. The Chinese Journal of Geological Hazard and Control, (02): 32–35. (2008) [Google Scholar]
- Z. C. Li, G. Liu. Correlation and interaction mechanism between loess landslides and loess caves[J]. Journal of Lanzhou University (Natural Sciences), 50(01): 21–25. (2014) [Google Scholar]
- J. Q. Dang, J. Li. The structural strength and shear strength of unsaturated loess[J]. Journal of Hydraulic Engineering, (07): 79–83+90. (2001) [Google Scholar]
- J. Q. Dang, J. Li. Strength characteristics of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, (02): 59–64. (1997) [Google Scholar]
- B. P. Zhang, L. Wang, H. Z. Yuan. The quantitative analysis of effects of soil moisture upon the loess structure strength[J]. Acta Universitatis Agriculturalis Boreali-Occidentalis, (01): 54–60. (1994) [Google Scholar]
- X. K. Fan, D. S. Jiang, H. L. Zhao. Analysis on anti-shear strength of shallow original state soil in loess plateau [J]. Journal of Soil Erosion and Soil and Water Conservation, (04): 70–76. (1997) [Google Scholar]
- X. Q. Chen, Y. N. Ren, Y. Li, et al. Effect of water content on shear strength parameters of unsaturated loess[J]. Gansu Science and Technology, 34(04): 88–90+106. (2018) [Google Scholar]
- W. Z. Guo, Y. K. Liu, X. Z. Xu, et al. Sensitivity on shear strength of the loess in the ecotone of wind-water erosion[J]. Research of Soil and Water Conservation, 25(03): 23–28. (2018) [Google Scholar]
- W. Z. Guo, X. Z. Xu, Y. K. Liu, et al. Changes in particle size distribution of suspended sediment affected by gravity erosion on the Loess Plateau, China[C]//Egu General Assembly Conference. EGU General Assembly Conference Abstracts. (2017) [Google Scholar]
- X. X. Xu, C. X. Gao, J. N. Zhao. Trends of runoff and sediment load of Yanhe River Basin and their related driving forces during 1956–2009[J]. Journal of Sediment Research, (02): 12–18. (2012) [Google Scholar]
- G. Q. Yu, Z. B. Li, M. S. Zhang, et al. Mechanisms of soil and water conservation measures regulating gravitational erosion in small watersheds on loess plateau[J]. Acta Pedologica Sinica, 49(04): 646–654. (2012) [Google Scholar]
- Y. F. Chai, B. Zhou, Z.M. Lv, et al. Control modes of red soil slipping surface in broken gully region of the loess plateau [J]. Soil and Water Conservation in China, (02): 49–51+69. (2014) [Google Scholar]
- L. B. Zhao, B. G. Zhang, Z. Z. Su. Quantitative analysis of soil anti-shearing strength enhancement by the root systems of herb plants[J]. Chinese Journal of Eco-agriculture, (03): 718–722. (2008) [Google Scholar]
- J. Z. Hu. Practice on planting hippophae rhamnoides in soft sandstone gullies for preventing gravity erosion[J]. Soil and Water Conservation in China, (05): 36–39+69. (2011) [Google Scholar]
- Q. G. Cai, Z. X. Lu, G. P. Wang. Process-based soil erosion and sediment yieid model in a small in the hilly loess region[J]. Journal of Geographical Sciences, (02): 108–117. (1996) [Google Scholar]
- T. J. Li, G. Q. Wang, H. Xue, et al. Spatial scale effects of sediment yield and transport characteristics in loess gully region[J]. Science in China(Series E), 39(06): 1095–1103. (2009) [Google Scholar]
- T. J. Li, G. Q. Wang, H. Xue, et al. Soil erosion and sediment transport in the gullied Loess Plateau: Scale effects and their mechanisms[J]. Science in China Series E: Technological Sciences, (5): 10. (2009) [Google Scholar]
- G. Q. Wang, T. J. Li, H. Xue, et al. Mechanism Analysis of Watershed Sediment Processes[J]. Journal of Basic Science and Engineering, (04): 455–462. (2006) [Google Scholar]
- L. L. Wang. Runoff-sediment coupling mechanism of different geomorphic unit in the loess hilly-gully region[D]. Northwest A&F University. (2017) [Google Scholar]
- T. X. Zhu, Y. Z. Chen. The primary study on sediment production of gravitation erosion in western Shanxi province[J]. Bulletin of Soil and Water Conservation, (02): 27–34. (1989) [Google Scholar]
- X. B. Zhang, Z. X. Chai, Y. C.Wang. An analysis to the combined factors of topography and lithology in the gravitational erosion of loess plateau[J]. Bulletin of Soil and Water Conservation, (05): 40–44+57. (1989) [Google Scholar]
- W. Fu. Research on establishment of the model for predicting soil erosion on loess hilly and gully areas [J]. Journal of Soil and Water Conservation, (03): 6–13. (1992) [Google Scholar]
- W. Fu. Research on grey system model for soil gravity erosion in loess regions[J]. Journal of Soil Erosion and Soil and Water Conservation, 2(4): 9–17. (1996) [Google Scholar]
- X. Jin, Z. C. Hao, J. L. Zhang, et al. Distributed soil erosion model with the effect of gravitational erosion[J]. Advances in Water Science, 19(2): 257–263. (2008) [Google Scholar]
- G. Q. Wang, T. J. Li. The digital watershed model for the Yellow River Basin[J]. Sciencepaper Online, 2007(07): 492–499. [Google Scholar]
- Wang G Q, Wu B S, Li T J. Digital Yellow River Model[J]. Sciencepaper Online, 1(1): 1–11. (2008) [Google Scholar]
- Wang G Q, Fu X D, Shi H Y, et al. Watershed Sediment Dynamics and Modeling: A Watershed Modeling System for Yellow River[M]. Advances in Water Resources Engineering. Springer, Cham, 1–40. (2015) [Google Scholar]
- J. G. Gong, Y. W. Jia, J. J. Liu, et al. Study on water-sediment process and its coupling simulation in watershed[M]. Beijing: Science Press. (2018) [Google Scholar]
- Z. Y. Liu, G. H. Ni, Z. D. Lei, et al. Study on hydrologic model of small scale distribution pattern for loess plateau region[J]. Yellow River, (10): 19–21. (2005) [Google Scholar]
- Z. Y. Liu, G. H. Ni, Z. D. Lei, et al. Distributed hydrological model of small and moderate size watersheds in the Loess Plateau[J]. Journal of Tsinghua University (Science and Technology), (09): 1546–1550. (2006) [Google Scholar]
- J. Y. Cai, Z. H. Zhou, J. J. Liu, et al. A distributed soil erosion model based on the three-process of runoff and sediment transport[J]. Journal of Hydraulic Engineering, 51(02): 140–151. (2020) [Google Scholar]
- Y. M. Zhu, Y. L. Lan, Z. H. Zhou, et al. Evolution mechanism of water and sediment processes in Daxia River Basin based on distributed water and sediment model[J]. Research of Soil and Water Conservation, 28(04): 121–127. (2021) [Google Scholar]
- Y. Z. Cao. Mechanism and prediction of gravity erosion in loess region[J]. Bulletin of Soil and Water Conservation, (04): 19–23. (1981) [Google Scholar]
- G Q Yu, Z B Li, P Li, et al. Numerical simulation on gravitational erosion of small watershed system in Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 25(12): 74–79+399. (2009) [Google Scholar]
- G. Q. Yu, X. Zhang, M. S. Zhang, et al. Mechanism of vegetation regulating on gravitational erosion in the slope-gully system on loess plateau[J], Journal of Natural Resources, 27(06): 922–932. (2012) [Google Scholar]
- X. Zhang, Z. W. Zhang, Z. B. Li, et al. Stability evaluation of gravitational erosion for small watershed on the loess plateau[J]. Bulletin of Soil and Water Conservation, 32(03): 236–239+301. (2012) [Google Scholar]
- K. X. Lu, Z. B. Li, G. Q. Yu. Reliability analysis of gravitational erosion stability of small watershed in the Loess Plateau[J]. Arid Land Geography, 35(04): 545–551. (2012) [Google Scholar]
- X. Jin, Z. Liu, C. Z. Wang, et al. Numerical Simulation of Gravity Erosion on Artificial Loess Slope[J]. China Rural Water and Hydropower, (08): 40–45. (2020) [Google Scholar]
- K. Zhang. Numerical simulation of gravity erosion characteristics of coarse sand bank slope in desert small watershed of upper yellow river[D]. Lanzhou University of Technology. (2020) [Google Scholar]
- X. Wei, X. G. Li, Z. B. Li, et al. Study on the adjust-control effect of check dam on gravity erosion of slope-gully systems in the Loess Plateau[J]. Journal of XI’an University of Architecture & Techology, 41(06): 856–861. (2009) [Google Scholar]
- B. H. Zhou, J. Yuan, Z. B. Li, et al. Study on responding of feature evolution about slope-gully system erosion and check dam interception of small watershed on loess plateau[J]. Acta Agriculturae Boreali-occidentalis Sinica, 21(10): 185–190. (2012) [Google Scholar]
- B. H. Zhou, J. Yuan, Z. B. Li, et al. Spatial characteristics of gravitational erosion in slope-gully system on loess plateau as controlled by check dam[J]. Bulletin of Soil and Water Conservation, 33(05): 55–59+86. (2013) [Google Scholar]
- H. D. Gao, Z. B. Li, P. Li, et al. Quantitative evaluation of slope stability on check-dams at different siltation heights[J], Transactions of the Chinese Society of Agricultural Engineering, 28(16): 127–132. (2012) [Google Scholar]
- H. D. Gao. Hydro-ecological impact of the gully erosion control works in loess hilly-gully region[D]. University of Chinese Academy of Sciences. (2013) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.