Open Access
SHS Web Conf.
Volume 175, 2023
International Conference in Innovation on Statistical Models Applied on Management, Humanity and Social Sciences (ICISMAMH2S 2023)
Article Number 01018
Number of page(s) 14
Published online 17 August 2023
  1. Zhang X., Yu P., Yan J., Spil ITAM. Using diffusion of innovation theory to understand the factors impacting patient acceptance and use of consumer e-health innovations: a case study in a primary care clinic. BMC Health Serv Res. 21 févr 2015;15:71. [Google Scholar]
  2. Chen S.C., Jong D., Lai M.T. Assessing the Relationship between Technology Readiness and Continuance Intention in an E-Appointment System: Relationship Quality as a Mediator. J Med Syst. sept 2014;38(9):76. [CrossRef] [Google Scholar]
  3. North F., Nelson E.M., Majerus R.J., Buss R.J., Thompson M.C., Crum B.A. Impact of Web-Based Self-Scheduling on Finalization of Well-Child Appointments in a Primary Care Setting: Retrospective Comparison Study. JMIR Medical Informatics. 18 mars 2021;9(3):e23450. [Google Scholar]
  4. Paré G., Raymond L., Castonguay A., Grenier Ouimet A., Trudel M.C. Assimilation of Medical Appointment Scheduling Systems and Their Impact on the Accessibility of Primary Care: Mixed Methods Study. JMIR Med Inform. 16 nov 2021;9(11):e30485. [Google Scholar]
  5. Küçük A., Demirci M., Kerman G., Soner Özsoy V. Evaluating of hospital appointment systems in Turkey: Challenges and opportunities. Health Policy and Technology. 1 mars 2021;10(1):69–74. [CrossRef] [Google Scholar]
  6. Wang W.Y., Gupta D. Adaptive Appointment Systems with Patient Preferences. M&SOM. juill 2011;13(3):373–389. [CrossRef] [Google Scholar]
  7. Xie H., Prybutok G., Peng X., Prybutok V. Determinants of Trust in Health Information Technology: An Empirical Investigation in the Context of an Online Clinic Appointment System. INTERNATIONAL JOURNAL OF HUMANCOMPUTER INTERACTION. 2020;36(12):1095–1109. [CrossRef] [Google Scholar]
  8. Zhao P., Yoo I., Lavoie J., Lavoie B.J., Simoes E. Web-Based Medical Appointment Systems: A Systematic Review. J Med Internet Res. 26 avr 2017;19(4):e134. [CrossRef] [Google Scholar]
  9. Ajzen I. The Theory of Planned Behavior. Organ Behav Hum Decis Process. déc 1991;50(2):179–211. [CrossRef] [Google Scholar]
  10. Ajzen I., Fishbein M. A Bayesian analysis of attribution processes. Psychological Bulletin. 1975;82:261–277. [CrossRef] [Google Scholar]
  11. Davis F. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. sept 1989;13(3):319–340. [CrossRef] [Google Scholar]
  12. Rogers E.M. Diffusion of Innovations [Internet]. Rochester, NY; 1983 [cité 2 janv 2023]. Disponible sur: [Google Scholar]
  13. Venkatesh, Morris, Davis, Davis. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly. 2003;27(3):425. [CrossRef] [Google Scholar]
  14. Venkatesh V., Thong J.Y.L., Xu X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly. 2012;36(1):157–178. [CrossRef] [Google Scholar]
  15. DeFife J.A., Conklin C.Z., Smith J.M., Poole J. Psychotherapy appointment no-shows: rates and reasons. Psychotherapy (Chic). sept 2010;47(3):413–417. [CrossRef] [Google Scholar]
  16. Mazaheri Habibi M.R., Abadi F.M., Tabesh H., Vakili-Arki H., Abu-Hanna A., Eslami S. Evaluation of patient satisfaction of the status of appointment scheduling systems in outpatient clinics: Identifying patients‘ needs. J Adv Pharm Technol Res. 2018;9(2):51–55. [CrossRef] [Google Scholar]
  17. Robotham D., Satkunanathan S., Reynolds J., Stahl D., Wykes T. Using digital notifications to improve attendance in clinic: systematic review and meta-analysis. BMJ Open. oct 2016;6(10):e012116. [CrossRef] [Google Scholar]
  18. Chang M.Y., Pang C., Michael Tarn J., Liu T.S., Yen D.C. Exploring user acceptance of an e-hospital service: An empirical study in Taiwan. Computer Standards & Interfaces. févr 2015;38:35–43. [CrossRef] [Google Scholar]
  19. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 21 juill 2009;339:b2535. [CrossRef] [Google Scholar]
  20. Hadji B., Degoulet P. Information system end-user satisfaction and continuance intention: A unified modeling approach. Journal of Biomedical Informatics. 1 juin 2016;61:185–193. [CrossRef] [Google Scholar]
  21. Almathami H.K.Y., Win K.T., Vlahu-Gjorgievska E. Barriers and Facilitators That Influence Telemedicine-Based, Real-Time, Online Consultation at Patients‘ Homes: Systematic Literature Review. J Med Internet Res. 20 févr 2020;22(2):e16407. [CrossRef] [Google Scholar]
  22. AlQudah A.A., Al-Emran M., Shaalan K. Technology Acceptance in Healthcare: A Systematic Review. Applied Sciences. janv 2021;11(22):10537. [CrossRef] [Google Scholar]
  23. Rahimi B., Nadri H., Afshar H.L., Timpka T. A Systematic Review of the Technology Acceptance Model in Health Informatics. Appl Clin Inform. juill 2018;09(3):604–634. [CrossRef] [Google Scholar]
  24. Ammenwerth, E. Technology Acceptance Models in Health Informatics: TAM and UTAUT. Stud Health Technol Inform. 30 juill 2019;263:64–71. [Google Scholar]
  25. Rajak M., Shaw K. An extension of technology acceptance model for mHealth user adoption. Technology in Society. 1 nov 2021;67:101800. [CrossRef] [Google Scholar]
  26. Holden R.J., Karsh B.T. The Technology Acceptance Model: Its past and its future in health care. J Biomed Inform. févr 2010;43(1):159–172. [CrossRef] [Google Scholar]
  27. Strudwick G. Predicting Nurses‘ Use of Healthcare Technology Using the Technology Acceptance Model: An Integrative Review. CIN: Computers, Informatics, Nursing. mai 2015;33(5):189. [CrossRef] [Google Scholar]
  28. Lee Y., Tsai H., Ruangkanjanases A. The Determinants for Food Safety Push Notifications on Continuance Intention in an E-Appointment System for Public Health Medical Services: The Perspectives of UTAUT and Information System Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. nov 2020;17(21). [Google Scholar]
  29. Saltzmann C., Boenigk S. Blood donors‘ usage intentions of donation appointmentscheduling systems during the COVID-19 pandemic and beyond. Journal of Philanthropy and Marketing. n/a(n/a):e1756. [Google Scholar]
  30. Chen S.C., Liu S.C., Li S.H., Yen D.C. Understanding the Mediating Effects of Relationship Quality on Technology Acceptance: An Empirical Study of EAppointment System. J Med Syst. déc 2013;37(6):9981. [CrossRef] [Google Scholar]
  31. Kitsios F., Stefanakakis S., Kamariotou M., Dermentzoglou L. E-service Evaluation: User satisfaction measurement and implications in health sector. Computer Standards & Interfaces. mars 2019;63:16–26. [CrossRef] [Google Scholar]
  32. Paré G., Trudel M.C., Forget P. Adoption, Use, and Impact of E-Booking in Private Medical Practices: Mixed-Methods Evaluation of a Two-Year Showcase Project in Canada. JMIR Med Inform. 24 sept 2014;2(2):e24. [Google Scholar]
  33. Xie H., Prybutok G., Peng X., Prybutok V. Determinants of Trust in Health Information Technology: An Empirical Investigation in the Context of an Online Clinic Appointment System. International Journal of Human-Computer Interaction. 20 juill 2020;36(12):1095–1109. [CrossRef] [Google Scholar]
  34. Taufiq A.R., Widyanti A., Muslim K., Wijayanto T., Trapsilawati F., Arini H.M., et al. Modelling the continuance intention towards the use of mobile hospital appointment system. IOP Conf Ser: Mater Sci Eng. 1 janv 2020;722(1):012010. [CrossRef] [Google Scholar]
  35. Zhang X., Yu P., Yan J. Patients‘ adoption of the e-appointment scheduling service: A case study in primary healthcare. In: Grain, H., MartinSanchez, F., Schaper, L., éditeurs. 2014. p. 176–181. [Google Scholar]
  36. Lee Y.P., Tsai H.Y., Ruangkanjanases A. The Determinants for Food Safety Push Notifications on Continuance Intention in an E-Appointment System for Public Health Medical Services: The Perspectives of UTAUT and Information System Quality. IJERPH. 9 nov 2020;17(21):8287. [CrossRef] [Google Scholar]
  37. Ala, A., Simic, V., Deveci, M., & Pamucar, D. (2023). Simulation-Based Analysis of Appointment Scheduling System in Healthcare Services: A Critical Review. Archives of Computational Methods in Engineering, 30(3), 1961–1978. [CrossRef] [Google Scholar]
  38. Woodcock, E. W. (2022). Barriers to and facilitators of automated patient selfscheduling for health care organizations: scoping review. Journal of Medical Internet Research, 24(1), e28323. [CrossRef] [Google Scholar]
  39. Sharma, N., Aggarwal, A. K., Arora, P., & Bahuguna, P. (2022). Association of waiting time and satisfaction level of patients with online registration system in a tertiary level medical institute outpatient department (OPD). Health Policy and Technology, 11(4), 100687. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.