Open Access
SHS Web Conf.
Volume 175, 2023
International Conference in Innovation on Statistical Models Applied on Management, Humanity and Social Sciences (ICISMAMH2S 2023)
Article Number 01055
Number of page(s) 12
Published online 30 August 2023
  1. Shefrin, H. (2002). Beyond greed and fear: Understanding behavioral finance and the psychology of investing, New York: Oxford University Press [CrossRef] [Google Scholar]
  2. Statman, M., Fisher, K. & Anginer, D. (2008). Affect in a behavioural asset-pricing model. Financial analysis journal, 74(2), 20–29. [CrossRef] [Google Scholar]
  3. Barberis, N., & Thaler, R. (2003). A survey of Behavioral Finance. Handbook of the economics of finance. Financial Markets and Asset Pricing, 1(B), 1051–1121. [Google Scholar]
  4. Ajzen, I. (1991), “The Theory of Planned Behavior’, Organizational Behavior and Human Decision Processes, Vol. 50, pp. 179–211. [CrossRef] [Google Scholar]
  5. Aregbeyen, Omo, and Stanley Ogochukwu Mbadiugha. 2011. Factors Influencing Investors Decisions in Shares of Quoted Companies in Nigeria. The Social Science 6: 205–212. [CrossRef] [Google Scholar]
  6. Khan, Fatima, Farhana Afrin, and Mirza Arifur Rahman. 2015. Factors Influencing Investors’ Decisions in Stock Market Investment in Bangladesh: A Study on Khulna City. Journal of Finance and Accounting 3: 198–204. [CrossRef] [Google Scholar]
  7. Trang, Phung Thai Minh, and Nguyen Huu Tho. 2017. Perceived risk, investment performance and intentions in emerging stock markets. International Journal of Economics and Financial Issues 7: 269–278. [Google Scholar]
  8. Kahneman, D. and Tversky, A. (1979), Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292. [CrossRef] [Google Scholar]
  9. Dimmock, S.G. and Kouwenberg, R. (2010), “Loss-aversion and household portfolio choice”, Journal of Empirical Finance, Vol. 17 No. 3, pp. 441–459. [CrossRef] [Google Scholar]
  10. Kalam, K. The Effects of Macroeconomic Variables on Stock Market Returns: Evidence the Effects of Macroeconomic Variables on Stock Market Returns: Malaysia’s Stock Market Return Performance Evidence from. J. World Bus. 2020, 55. [Google Scholar]
  11. Qasim, M.; Hussain, R.Y.; Mehboob, I.; Arshad, M. Impact of herding behavior and overconfidence bias on investors’ decisionmaking in Pakistan. Accounting 2019, 5, 81–90. [CrossRef] [Google Scholar]
  12. Ahmad, M.; Shah, S.Z.A. Overconfidence heuristic-driven bias in investment decisionmaking and performance: Mediating effects of risk perception and moderating effects of financial literacy. J. Econ. Adm. Sci. 2020. [Google Scholar]
  13. Bakar, S., & Yi, A. N. C. (2016). The impact of psychological factors on investors’ decision making in Malaysian stock market: a case of Klang Valley and Pahang. Procedia Economics and Finance, 35, 319–328. [CrossRef] [Google Scholar]
  14. Sadaqat, S.H.S.; Xinping, X.; Khan, M.A.; Harjan, S.A. Investor and Manager Overconfidence Bias and Firm Value: Micro-level Evidence from the Pakistan Equity Market. Int. J. Econ. Financ. Issues 2018, 8, 190–199. [Google Scholar]
  15. Aranda-Uson, Alfonso, Pilar Portillo-Tarragona, Luz María Marín-Vinuesa, and Sabina Scarpellini. 2019. Financial Resources for the Circular Economy: A Perspective from Businesses. Sustainability 11: 888. doi: 10.3390/su11030888. [CrossRef] [Google Scholar]
  16. Herranz González, Fátima, and Carmen Martínez-Carrascal. 2017. The Impact of Firms’ Financial Position on Fixed Investment and Employment. An Analysis for Spain, Working Papers 1714, Banco de Espana. [Google Scholar]
  17. Sadiq, M.N.; Ased, R.; Khan, A. Impact of Personality Traits on Investment Intention: The Mediating Role of Risk Behaviour and the Moderating Role of Financial Literacy Literature Review Personality Traits. J. Financ. Econ. Res. 2019, 4, 1–18. [CrossRef] [Google Scholar]
  18. Raut, R.K. Past behaviour, financial literacy and investment decision-making process of individual investors. Int. J. Emerg. Mark. 2020, 15, 1243–1263. [CrossRef] [Google Scholar]
  19. Garg, N.; Singh, S. Financial literacy among youth. Int. J. Soc. Econ. 2018, 45, 173–186. [CrossRef] [Google Scholar]
  20. Van Rooij, M., Lusardi, A. and Alessie, R. (2011), “Financial literacy and stock market participation”, Journal of Financial Economics, Elsevier, Vol. 101 No. 2, pp. 449–472. [CrossRef] [Google Scholar]
  21. De Meza, D., Irlenbusch, B., & Reyniers, D. (2008). Financial capability: A behavioural economics perspective. Consumer Research, 69, 192–193. [Google Scholar]
  22. Montford, W. and R. E. Goldsmith (2016). How Gender and Financial Self-Efficacy Influence Investment Risk Taking. International Journal of Consumer Studies, 40(1), 101–106. [CrossRef] [Google Scholar]
  23. Chatterjee, S., Finke, M., & Harness, N. (2011). The impact of self-efficacy on wealth accumulation and portfolio choice. Applied Economics Letters, 18(7), 627–631. [CrossRef] [Google Scholar]
  24. Phan, K.C.; Zhou, J. Factors Influencing Individual Investor Behavior: An Empirical Study of the Vietnamese Stock Market. Am. J. Bus. Manag. 2014, 3, 77–94. [Google Scholar]
  25. Sashikala, V.; Chitramani, P. The Impact of Behavioural Factors on Investment Intention of Equity Investors. Asian J. Manag. 2018, 9, 183–189. [CrossRef] [Google Scholar]
  26. Sondari, M.C. Using Theory of Planned Behavior in Predicting Intention to Invest: Case of Indonesia. Int. Acad. Res. J. Bus. Technol. 2015, 1, 137–141. [Google Scholar]
  27. Vuk, K.; Pifar, A.; Aleksi'c, D. Should I, Would I, Could I: Trust and Risk Influences on Intention to Invest. Dyn. Relatsh. Manag. J. 2017, 6, 61–67. [Google Scholar]
  28. Hair, J., Black, W., Babin, B., and Anderson, R. (2010). Multivariate data analysis (7th ed.): Prentice-Hall, Inc. Upper Saddle River, NJ, USA. p618–620. [Google Scholar]
  29. Reinartz, Werner Haenlein, Michael Henseler, Jörg. (2009). An Empirical Comparison of the Efficacy of Covariance-Based and Variance-Based SEM. International Journal of Research in Marketing. 26. 332–344. [CrossRef] [Google Scholar]
  30. Geisser, S. (1974). A predictive approach to the random e_ects model. Biometrika, 61, 101–107. [CrossRef] [Google Scholar]
  31. Wetzels, M., Odekerken-Schroder, G., van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33, 177–195 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.