Open Access
Issue
SHS Web Conf.
Volume 179, 2023
2023 6th International Conference on Humanities Education and Social Sciences (ICHESS 2023)
Article Number 04008
Number of page(s) 5
Section Community Management and Public Affairs Service
DOI https://doi.org/10.1051/shsconf/202317904008
Published online 14 December 2023
  1. H. Wang, ZeroMat: Solving Cold-start Problem of Recommender System with No Input Data, ICISCAE, 2021 [Google Scholar]
  2. H. Wang, DotMat: Solving Cold-start Problem and Alleviating Sparsity Problem for Recommender Systems, ICET, 2022 [Google Scholar]
  3. H. Wang, PoissonMat: Remodeling Matrix Factorization using Poisson Distribution and Solving the Cold Start Problem without Input Data, MLISE, 2022 [Google Scholar]
  4. H. Wang, PowerMat: context-aware recommender system without user item rating values that solves the cold-start problem, AIID, 2022 [Google Scholar]
  5. H. Wang, Pareto pairwise ranking for fairness enhancement of recommender systems, CISAT, 2022 [Google Scholar]
  6. F. Harper, J. Konstan, The MovieLens Datasets: History and Context, ACM Transactions on Interactive Intelligent Systems, 2015 [Google Scholar]
  7. A. Kosir, A. Odic, et al., Database for contextual personalization. Elektrotehniski Vestnik, 2011 [Google Scholar]
  8. F. Ismailoglu, Metric Learning For Context-Aware Recommender Systems, PRIS, 2021 [Google Scholar]
  9. L. Tran, Y. Tay, et al., HyperML: A Boosting Metric Learning Approach in Hyperbolic Space for Recommender Systems, WSDM, 2020 [Google Scholar]
  10. H. Chen, X. Li, et al., Adversarial Collaborative Filtering for Free, RecSys, 2023 [Google Scholar]
  11. C. Li, X. Zhao, et al., STRec: Sparse Transformer for Sequential Recommendations, RecSys, 2023 [Google Scholar]
  12. Y. Liu, Q. Liu, et al., Concept-Aware Denoising Graph Neural Network for Micro-Video Recommendation, CIKM, 2021 [Google Scholar]
  13. A. El-Kishky, T. Markovich, et al., TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation, KDD, 2022 [Google Scholar]
  14. J. Tang, S. Shen, et al., When Fairness meets Bias: a Debiased Framework for Fairness aware Top-N Recommendation, RecSys, 2023 [Google Scholar]
  15. T. Wei, J. He, Comprehensive Fair Meta-learned Recommender System, KDD, 2022 [Google Scholar]
  16. H. Wang, Evolution of the Online Rating Platform Data Structures and its Implications for Recommender Systems, CAMMIC, 2023 [Google Scholar]
  17. H. Wang, Skellam Rank: Fair Learning to Rank Algorithm Based on Poisson Process and Skellam Distribution for Recommender Systems, CAMMIC, 2023 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.