Open Access
SHS Web Conf.
Volume 181, 2024
2023 International Conference on Digital Economy and Business Administration (ICDEBA 2023)
Article Number 03022
Number of page(s) 14
Section Supply Chain Management and Logistics
Published online 17 January 2024
  1. Miller E. An introduction to the resource description framework[J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1):15–19. [CrossRef] [Google Scholar]
  2. Sun X. X., Construction of Subject Knowledge Graph Based on Latent Semantic Analysis[D]. Central China Normal University, 2013. [Google Scholar]
  3. Su J. L., Wang Y. Z., Jin X. L., et al. Entity Alignment of Knowledge Graph Combining Semantic and Structural Information[J]. Journal of Shanxi University: Natural Science Edition, 2019, 42(01):23–30. [Google Scholar]
  4. Zhao Hai-Xia, Li Lei, Wu Xin-Dong, et al. Information extraction for knowledge graph[J]. Data Mining, 2020, 10(4):21. [Google Scholar]
  5. Auer S., Bizer C., Kobilarov G., et al. Dbpedia: A nucleus for a web of open data[M]// The semantic web. Springer, Berlin, Heidelberg, 2007: 722–735. [CrossRef] [Google Scholar]
  6. Fabian M. S., Gjergji K., Gerhard W. Yago: A core of semantic knowledge unifying wordnet and wikipedia[C]// 16th International World Wide Web Conference, WWW. 2007: 697–706. [Google Scholar]
  7. Xu K., Reddy S., Feng Y., et al. Question answering on freebase via relation extraction and textual evidence[J]. arXiv preprint arXiv:1603.00957, 2016. [Google Scholar]
  8. Ribes D., Bowker G. C. Between meaning and machine: Learning to represent the knowledge of communities[J]. Information and Organization, 2009, 19(4):199–217. [Google Scholar]
  9. Ding B., Wang Q., Wang B., et al. Improving knowledge graph embedding using simple constraints[J]. arXiv preprint arXiv:1805.02408, 2018. [Google Scholar]
  10. Nickel M., Tresp V., Kriegel H. P., A three-way model for collective learning on multi-relational data[C]// Icml. 2011. [Google Scholar]
  11. Yang B., Yih W., He X., et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv preprint arXiv:1412.6575, 2014. [Google Scholar]
  12. Trouillon T. P., Bouchard G. M. Complex embeddings for simple link prediction: U.S. Patent Application 15/156, 849[P]. 2017-11-23. [Google Scholar]
  13. Bordes A., Usunier N., Garcia-Duran A., et al. Translating embeddings for modeling multi-relational data[J]. Advances in neural information processing systems, 2013, 26. [Google Scholar]
  14. Wang Z., Zhang J., Feng J., et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2014, 28(1). [Google Scholar]
  15. Lin Y., Liu Z., Sun M., et al. Learning entity and relation embeddings for knowledge graph completion[C]// Twenty- ninth AAAI conference on artificial intelligence. 2015. [Google Scholar]
  16. Xiong S., Huang W., Duan P. Knowledge graph embedding via relation paths and dynamic mapping matrix[C]// International Conference on Conceptual Modeling. Springer, Cham, 2018: 106–118. [Google Scholar]
  17. Ji G., Liu K., He S., et al. Knowledge graph completion with adaptive sparse transfer matrix[C]// Thirtieth AAAI conference on artificial intelligence. 2016. [Google Scholar]
  18. Sun Z., Deng Z. H., Nie J. Y., et al. Rotate: Knowledge graph embedding by relational rotation in complex space[J]. arXiv preprint arXiv:1902.10197, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.