Open Access
Issue
SHS Web Conf.
Volume 188, 2024
2024 International Conference on Development of Digital Economy (ICDDE 2024)
Article Number 01007
Number of page(s) 9
Section Digital Finance Analysis and Research
DOI https://doi.org/10.1051/shsconf/202418801007
Published online 01 April 2024
  1. N. Chakrabarty and S. Biswas, Strategic markowitz portfolio optimization (smpo): a portfolio return booster, 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), pp. 196-200 (2019). [Google Scholar]
  2. J. W. Goodell, S. Kumar, W. M. Lim, & D. Pattnaik. JBEF, 32, 100577 (2021). [Google Scholar]
  3. E. Beccalli, V. Elliot, & F. Virili. Artificial intelligence and ethics in portfolio management. In Lecture notes in information systems and organisation, pp. 19-30 (2020). [Google Scholar]
  4. D. Nawrocka. Machine learning for trading and portfolio management using Python. Berlin School of Economics and Law (2018). [Google Scholar]
  5. E. M. H. Chan, C. W. Wong, W. Tse, B. K. Cheung, & G. Y. N. Tang. Artificial intelligence in portfolio management. In Springer eBooks, pp. 403-409 (2002). [Google Scholar]
  6. Z. Tang & G. Gupta. Stock investment strategies and portfolio analysis. In Advances in intelligent systems and computing, pp. 397-406 (2022). [Google Scholar]
  7. P. B. C. Gray. Stock prediction with ml: walkforward modeling. The Alpha Scientist (2018). [Google Scholar]
  8. C. Saunders, A. Gammerman, & V. Vovk. Ridge regression learning algorithm in dual variables. International Conference on Machine Learning, 515-521 (1998). [Google Scholar]
  9. W. F. Sharpe. JPM, 21 (1), 49-58 (1994). [Google Scholar]
  10. M. Magdon-Ismail & A. F. Atiya. RM, 17 (10), 99102 (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.