Open Access
Issue |
SHS Web Conf.
Volume 189, 2024
The 2nd International Conference on Ergonomics Safety, and Health (ICESH) and the 7th Ergo-Camp (ICESH & Ergo-Camp 2023)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/shsconf/202418901008 | |
Published online | 09 April 2024 |
- National Safety Council, “Understanding the distracted brain,” Natl. Saf. Counc., no. April, p. 24 (2012) [Online]. http://www.nsc.org/DistractedDrivingDocuments/Cognitive-Distraction-White-Paper.pdf%5Cn http://trid.trb.org/view/1355736 [Google Scholar]
- T. Ranney, E. Mazzae, R. Garrott, and M. Goodman, NHTSA driver distraction research: Past, present, and future, USDOT, Natl. Highw. Traffic Saf. Adm., pp. 1–11 (2000) [Online]. http://www-nrd.nhtsa.dot.gov/departments/HumanFactors/driver-distraction/PDF/233.PDF [Google Scholar]
- A. Tjolleng et al., Classification of a Driver’s cognitive workload levels using artificial neural network on ECG signals, Appl. Ergon. 59 (2017), 10.1016/j.apergo.2016.09.013 [Google Scholar]
- B. Mehler and M. I. T. Agelab, Measuring Cognitive Workload : From HMI Assessment to Real-Time State Monitoring, vol. 2018, pp. 1–25, (2018) [Google Scholar]
- J. Son, B. Mehler, T. Lee, Y. Park, J. F. Coughlin, and B. Reimer, Impact of cognitive workload on physiological arousal and performance in younger and older drivers, Proc. Sixth Int. Driv. Symp. Hum. Factors Driv. Assessment, Train. Veh. Des., pp. 87–94, (2011) [Google Scholar]
- E. T. Solovey, M. Zec, E. Abdon, G. Perez, B. Reimer, and B. Mehler, Classifying Driver Workload Using Physiological and Driving Performance Data : Two Field Studies, pp. 4057–4066, (2014), 10.1145/2556288.2557068 [Google Scholar]
- B. Reimer, B. Mehler, and W. T. Freeman, Cognitive Load Estimation in the Wild, In Proceedings of the 2018 chi conference on human factors in computing systems (pp. 1–9), no. 1, pp. 1–9, (2018) [Google Scholar]
- M. Lohani, B. R. Payne, and D. L. Strayer, A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving., Front. Hum. Neurosci., vol. 13, p. 57, (2019), 10.3389/fnhum.2019.00057 [CrossRef] [Google Scholar]
- A. Persson, H. Jonasson, I. Fredriksson, U. Wiklund, and C. Ahlstrom, Heart Rate Variability for Driver Sleepiness Classification in Real Road Driving Conditions()., Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf., vol. 2019, pp. 6537–6540, Jul. (2019), 10.1109/EMBC.2019.8857229 [Google Scholar]
- J. Huang, X. Luo, and X. Peng, A novel classification method for a driver’s cognitive stress level by transferring interbeat intervals of the ECG signal to pictures, Sensors (Switzerland). 20, 5, (2020), 10.3390/s20051340 [Google Scholar]
- B. Mehler, B. Reimer, and J. F. Coughlin, Sensitivity of Physiological Measures for Detecting Systematic Variations in Cognitive Demand From a Working Memory Task: An On-Road Study Across Three Age Groups, Hum. Factors J. Hum. Factors Ergon. Soc. 54, 3, pp. 396–412, (2012), 10.1177/0018720812442086 [CrossRef] [Google Scholar]
- M. Choi, G. Koo, M. Seo, and S. W. Kim, Wearable Device-Based System to Monitor a Driver’s Stress, Fatigue, and Drowsiness, IEEE Trans. Instrum. Meas. 67, 3, pp. 634–645, (2018), 10.1109/TIM.2017.2779329 [CrossRef] [Google Scholar]
- S. Leonhardt, L. Leicht, and D. Teichmann, Unobtrusive Vital Sign Monitoring in Automotive Environments-A Review., Sensors (Basel). 18, 9, Sep. (2018), 10.3390/s18093080 [CrossRef] [Google Scholar]
- R. K. Singh, A. Sarkar, and C. S. Anoop, A health monitoring system using multiple non-contact ECG sensors for automotive drivers, Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., vol. 2016-July, (2016), 10.1109/I2MTC.2016.7520539 [Google Scholar]
- Z. Piotrowski and M. Szypulska, Classification of falling asleep states using HRV analysis, Biocybern. Biomed. Eng. 37, 2, pp. 290–301, (2017), 10.1016/j.bbe.2017.02.003 [CrossRef] [Google Scholar]
- A. Sahayadhas, K. Sundaraj, and M. Murugappan, Drowsiness detection during different times of day using multiple features., Australas. Phys. Eng. Sci. Med. 36, 2, pp. 243–50, (2013), 10.1007/s13246-013-0200-6 [CrossRef] [Google Scholar]
- M. Patel, S. K. L. Lal, D. Kavanagh, and P. Rossiter, Applying neural network analysis on heart rate variability data to assess driver fatigue, Expert Syst. Appl. 38, 6, pp. 7235–7242, (2011), 10.1016/j.eswa.2010.12.028 [CrossRef] [Google Scholar]
- M. Q. Khan and S. Lee, A comprehensive survey of driving monitoring and assistance systems, Sensors (Switzerland). 19, 11, (2019), 10.3390/s19112574 [Google Scholar]
- M. H. Alkinani, W. Z. Khan, and Q. Arshad, Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements and Open Challenges, IEEE Access, vol. 8, pp. 105008–105030, (2020), 10.1109/ACCESS.2020.2999829 [Google Scholar]
- M. P. Oppelt et al., ADABase: A Multimodal Dataset for Cognitive Load Estimation, Sensors. 23, 1, p. 340, (2022), 10.3390/s23010340 [CrossRef] [Google Scholar]
- N. F. S. Jeffri and D. R. Awang Rambli, A review of augmented reality systems and their effects on mental workload and task performance, Heliyon. 7, 3, p. e06277, (2021), 10.1016/j.heliyon.2021.e06277 [CrossRef] [Google Scholar]
- N. Musa et al., A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram, J. Ambient Intell. Humaniz. Comput. 14, 7, pp. 9677–9750, (2023), 10.1007/s12652-022-03868-z [CrossRef] [Google Scholar]
- S. Kaplan Berkaya, A. K. Uysal, E. Sora Gunal, S. Ergin, S. Gunal, and M. B. Gulmezoglu, A survey on ECG analysis, Biomed. Signal Process. Control. 43, pp. 216–235, (2018), 10.1016/j.bspc.2018.03.003 [CrossRef] [Google Scholar]
- E. J. C. Nacpil, Z. Wang, and K. Nakano, Application of Physiological Sensors for Personalization in Semi-Autonomous Driving: A Review, IEEE Sens. J. 21, 18, pp. 19662–19674, (2021), 10.1109/JSEN.2021.3100038 [CrossRef] [Google Scholar]
- F. Shaffer and J. P. Ginsberg, An Overview of Heart Rate Variability Metrics and Norms., Front. public Heal. 5, 258, (2017), 10.3389/fpubh.2017.00258 [CrossRef] [Google Scholar]
- Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology., Circulation. 93, 5, pp. 1043–1065, Mar. (1996) [CrossRef] [Google Scholar]
- R. Wood, B. Maraj, C. M. Lee, and R. Reyes, Short-term heart rate variability during a cognitive challenge in young and older adults., Age Ageing. 31, 2, pp. 131–135, Mar. (2002), 10.1093/ageing/31.2.131 [CrossRef] [Google Scholar]
- E. Merdjanovska and A. Rashkovska, Comprehensive survey of computational ECG analysis: Databases, methods and applications, Expert Syst. Appl. 203, no. September 2020, p. 117206, (2022), 10.1016/j.eswa.2022.117206 [CrossRef] [Google Scholar]
- S. Yang et al., The Impacts of Temporal Variation and Individual Differences in Driver Cognitive Workload on ECG-Based Detection, Hum. Factors. 63, 5, pp. 772–787, (2021), 10.1177/0018720821990484 [CrossRef] [Google Scholar]
- A. Tavakoli, M. Boukhechba, and A. Heydarian, Personalized Driver State Profiles: A Naturalistic Data-Driven Study, Adv. Intell. Syst. Comput., vol. 1212 AISC, no. May, pp. 32–39, (2020), 10.1007/978-3-030-50943-9_5 [CrossRef] [Google Scholar]
- M. Amin et al., ECG-Based Driver’s Stress Detection Using Deep Transfer Learning and Fuzzy Logic Approaches, IEEE Access. 10, pp. 29788–29809, (2022), 10.1109/ACCESS.2022.3158658 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.