Open Access
Issue |
SHS Web Conf.
Volume 189, 2024
The 2nd International Conference on Ergonomics Safety, and Health (ICESH) and the 7th Ergo-Camp (ICESH & Ergo-Camp 2023)
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/shsconf/202418901040 | |
Published online | 09 April 2024 |
- Businessware, Data Creation and Replication Will Grow at a Faster Rate Than Installed Storage Capacity, According to the IDC Global DataSphere and StorageSphere Forecasts. (2021). [Online]. Available: https://www.businesswire.com/news/home/20210324005175/en/Data-Creation-and-Replication-Will-Grow-at-a-Faster-Rate-Than-Installed-Storage-Capacity-According-to-the-IDC-Global-DataSphere-and-StorageSphere-Forecasts [Google Scholar]
- S. Sagiroglu, R. Terzi, Y. Canbay, and I. Colak, Big data issues in smart grid systems, in 2016 IEEE international conference on renewable energy research and applications (ICRERA), pp. 1007–1012, November (2016) [Google Scholar]
- S. F. Wamba, S. Akter, A. Edwards, G. Chopin, and D. Gnanzou, How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 165, 234–246 (2015) [CrossRef] [Google Scholar]
- T. Zhu, S. Xiao, Q. Zhang, Y. Gu, P. Yi, and Y. Li, Emergent technologies in big data sensing: a survey. Int. J. Distrib. Sens. Networks 11(10), 902982 (2015) [Google Scholar]
- M. Khan and S. S. Khan, Data and information visualization methods, and interactive mechanisms: A survey. Int. J. Comput. Appl. 34(1), 1–14 (2011) [Google Scholar]
- L. Wang, G. Wang, and C. A. Alexander, Big data and visualization: methods, challenges and technology progress. Digital Technologies 1(1), 33–38 (2015). doi: 10.12691/dt-1-1-7 [Google Scholar]
- R. S. Raghav, S. Pothula, T. Vengattaraman, and D. Ponnurangam, A survey of data visualization tools for analyzing large volume of data in big data platform, in 2016 International Conference on Communication and Electronics Systems (ICCES), pp. 1–6, October (2016), IEEE [Google Scholar]
- H. Kennedy and R. L. Hill, The feeling of numbers: Emotions in everyday engagements with data and their visualisation. Sociology 52(4), 830–848 (2018) [CrossRef] [Google Scholar]
- C. Ware, Information Visualization: Perception for Design (Morgan Kaufmann, 2019) [Google Scholar]
- E. Olshannikova, A. Ometov, Y. Koucheryavy, and T. Olsson, Visualizing big data. Big Data Technol. Appl., pp. 101–131, January (2016). doi: 10.1007/978-3-319-44550-2_4 [Google Scholar]
- E. F. Sinar, Data visualization: get visual to drive HR’s impact and influence. SHRM-SIOP Science of HR White Paper Series, pp. 1–24 (2018) [Google Scholar]
- J. A. Harsh, M. Campillo, C. Murray, C. Myers, J. Nguyen, and A. V. Maltese, Seeing’ data like an expert: An eye-tracking study using graphical data représentations. CBE—Life Sci. Educ. 18(3), ar32 (2019) [Google Scholar]
- D. L. K. Chuen, L. Guo, and Y. Wang, Cryptocurrency: A new investment opportunity? J. Altern. Investments 20(3), 16–40 (2017). doi: 10.3905/jai.2018.20.3.016 [CrossRef] [Google Scholar]
- M. H. Miraz and M. Ali, Applications of blockchain technology beyond cryptocurrency. arXiv preprint arXiv:1801.03528 (2018) [Google Scholar]
- The Suntrics, Top Reasons Why You Are Failing As A Crypto Trader? (2022), [Online]. Available: https://suntrics.com/tech-blogs/failing-as-a-crypto-trader/ [Google Scholar]
- F. Fang, C. Ventre, M. Basios, L. Kanthan, D. Martinez-Rego, F. Wu, and L. Li, Cryptocurrency trading: a comprehensive survey. Financ. Innov. 8(1), 1–59 (2022) [CrossRef] [Google Scholar]
- V. Fonseca, L. Pacheco, and J. Lobão, Psychological barriers in the cryptocurrency market. Rev. Behav. Financ. 12(2), 151–169 (2020). doi: 10.1108/RBF-03-2019-0041/FULL/HTML [CrossRef] [Google Scholar]
- C. F. Chi and R. S. Dewi, Matching performance of vehicle icons in graphical and textual formats. Appl. Ergon. 45(4), 904–916 (2014). doi: 10.1016/j.apergo.2013.11.009 [CrossRef] [Google Scholar]
- Z. Zou and S. Ergan, A framework towards quantifying human restorativeness in virtual built environments. arXiv preprint arXiv:1902.05208 (2019) [Google Scholar]
- Y. T. Prasetyo, R. Widyaningrum, and C. J. Lin, Eye gaze accuracy in the projection-based stereoscopic display as a function of number of fixation, eye movement time, and parallax, in 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 54–58, December (2019), IEEE [Google Scholar]
- A. Bangor, P. Kortum, and J. Miller, Determining what individual SUS scores mean: Adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.