Open Access
SHS Web Conf.
Volume 194, 2024
The 6th ETLTC International Conference on ICT Integration in Technical Education (ETLTC2024)
Article Number 03005
Number of page(s) 10
Section Intelligent Information Design
Published online 26 June 2024
  1. Huang, M. H., & Rust, R. T. (2023). EXPRESS: The Caring Machine: Feeling AI for Customer Care. Journal of Marketing, 00222429231224748. [Google Scholar]
  2. Dodd, N., Fan, H., Khopkar, P., Mendoza, F., Mimo, E. M., Shetty, Y., … & Michael, K. (2022, November). Facial emotion recognition and the future of work. In 2022 IEEE International Symposium on Technology and Society (ISTAS) (Vol. 1, pp. 1–9). IEEE. [Google Scholar]
  3. Su, Y. S., Suen, H. Y., & Hung, K. E. (2021). Predicting behavioral competencies automatically from facial expressions in real-time video-recorded interviews. Journal of Real-Time Image Processing, 1–11. [Google Scholar]
  4. Ribeiro, B., Oliveira, G., Laranjeira, A., & Arrais, J. P. (2017). Deep learning in digital marketing: brand detection and emotion recognition. International Journal of Machine Intelligence and Sensory Signal Processing, 2(1), 32–50. [CrossRef] [Google Scholar]
  5. Omer, S. M., Shahid, S., Saleem, S. T., & Sohaib, S. (2023). THE IMPACT OF AI-POWERED AGENTS ON BRAND RECOGNITION AND ITS IMPLICATIONS FOR BUSINESS PERFORMANCE. Russian Law Journal, 11(6), 167–179. [Google Scholar]
  6. Mantello, P., Ho, M. T., Nguyen, M. H., & Vuong, Q. H. (2023). Bosses without a heart: socio-demographic and cross-cultural determinants of attitude toward Emotional AI in the workplace. AI & society, 38(1), 97–119. [CrossRef] [Google Scholar]
  7. Pal, A., Gopi, S., & Lee, K. M. (2023). Fintech Agents: Technologies and Theories. Electronics, 12(15), 3301. [CrossRef] [Google Scholar]
  8. Dupré, D., Krumhuber, E. G., Küster, D., & McKeown, G. J. (2020). A performance comparison of eight commercially available automatic classifiers for facial affect recognition. Plos one, 15(4), e0231968. [CrossRef] [Google Scholar]
  9. Del Prete, M. (2021). Emotional artificial intelligence: detecting and managing customer emotions in automated customer service. [Google Scholar]
  10. Guo, Y., Li, Y., Liu, D., & Xu, S. X. (2024). Measuring service quality based on customer emotion: An explainable AI approach. Decision Support Systems, 176, 114051. [CrossRef] [Google Scholar]
  11. Hossain, M. S., & Muhammad, G. (2019). Emotion recognition using deep learning approach from audio–visual emotional big data. Information Fusion, 49, 69–78. [CrossRef] [Google Scholar]
  12. Singh, P., Srivastava, R., Rana, K. P. S., & Kumar, V. (2021). A multimodal hierarchical approach to speech emotion recognition from audio and text. Knowledge-Based Systems, 229, 107316. [CrossRef] [Google Scholar]
  13. Chaudhari, A., Bhatt, C., Krishna, A., & Mazzeo, P. L. (2022). ViTFER: facial emotion recognition with vision transformers. Applied System Innovation, 5(4), 80. [CrossRef] [Google Scholar]
  14. Chaubey, M. S., & Pathrotkar, M. N. (2023). FACIAL RECOGNITION AI: A POWERFUL TOOL FOR EMOTION DETECTION AND CHARACTERIZATION. Journal of Data Acquisition and Processing, 38(2), 1914. [Google Scholar]
  15. Schoneveld, L., Othmani, A., & Abdelkawy, H. (2021). Leveraging recent advances in deep learning for audio-visual emotion recognition. Pattern Recognition Letters, 146, 1–7. [CrossRef] [Google Scholar]
  16. Zhang, Jianhua, et al. “Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review.” Information Fusion 59 (2020): 103–126. [CrossRef] [Google Scholar]
  17. Dzedzickis, Andrius, Artūras Kaklauskas, and Vytautas Bucinskas. “Human emotion recognition: Review of sensors and methods.” Sensors 20.3 (2020): 592. [Google Scholar]
  18. Mittal, Trisha, et al. “M3er: Multiplicative multimodal emotion recognition using facial, textual, and speech cues.” Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 02. 2020. [Google Scholar]
  19. Abdullah, Sharmeen M. Saleem Abdullah, et al. “Multimodal emotion recognition using deep learning.” Journal of Applied Science and Technology Trends 2.02 (2021): 52–58. [Google Scholar]
  20. Zhang, J., Yin, Z., Chen, P., & Nichele, S. (2020). Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59, 103–126. [CrossRef] [Google Scholar]
  21. Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M. E., … & Staab, S. (2020). Bias in data‐driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1356. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.