Open Access
Issue
SHS Web Conf.
Volume 196, 2024
2024 International Conference on Economic Development and Management Applications (EDMA2024)
Article Number 02003
Number of page(s) 15
Section Finance and Stock Market
DOI https://doi.org/10.1051/shsconf/202419602003
Published online 26 August 2024
  1. Sina Finance. (2024). “US Stock Quotes.” Sina.com. Retrieved 10 July, https://finance.sina.com.cn/stock/usstock/sector.shtml. [Google Scholar]
  2. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9(8):1735–80. [CrossRef] [PubMed] [Google Scholar]
  3. Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE international conference on acoustics, speech, and signal processing (ICASSP). IEEE; 2011, p. 4144–7. [Google Scholar]
  4. Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press. [Google Scholar]
  5. Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Journal of Economic Perspectives, 11(4), 55-75. [Google Scholar]
  6. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, … Liu HH. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 1998;454(1971):903–95. [Google Scholar]
  7. Guo, S., Wen, Y., Zhang, X. and Chen, H., 2023. Runoff prediction of lower Yellow River based on CEEMDAN–LSSVM–GM (1,1) model. Scientific Reports, 13, p. 1511. [CrossRef] [Google Scholar]
  8. Guo, C., Kang, X., Xiong, J., & Wu, J. (2023). A New Time Series Forecasting Model Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Temporal Convolutional Network. *Neural Processing Letters*, 55(4), 4397–4417. [CrossRef] [Google Scholar]
  9. Zhang, X., Ren, H., Liu, J., Zhang, Y., & Cheng, W. (2024). A monthly temperature prediction based on the CEEMDAN–BO–BiLSTM coupled model. *Scientific Reports, 14*, 808. [CrossRef] [Google Scholar]
  10. Staudemeyer, R. C., & Rothstein, E. (2019). Understanding LSTM – a tutorial into Long Short-Term Memory Recurrent Neural Networks. arXiv:1909.09586v1 [Google Scholar]
  11. Lindemann, B., Müller, T., Vietz, H., Jazdi, N., & Weyrich [Google Scholar]
  12. Smith, J., & Johnson, A. (2020). “Predicting Stock Market Volatility Using AR Models.” Journal of Finance and Economics, 25(2), 112-130. [Google Scholar]
  13. Garcia, M., & Fernandez, L. (2018). “Forecasting Electricity Demand Using AR Models: A Case Study of Spain.” Energy Economics, 70, 542-550. [Google Scholar]
  14. Li, X., Wang, Y., & Zhang, D. (2021). “Forecasting Stock Market Volatility Using a High-Frequency Autoregressive Model.” Journal of Financial Econometrics, 19(3), 445-467. [Google Scholar]
  15. Chen, Y., & Ghysels, E. (2016). “Forecasting Realized Volatility: HAR-RV versus Multifractal Models.” Journal of Econometrics, 192(1), 391-401. [CrossRef] [Google Scholar]
  16. Andersen, T. G., & Bollerslev, T. (1998). Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. *International Economic Review, 39*(4), 885-905. https://doi.org/10.2307/2527370 [Google Scholar]
  17. https://finance.yahoo.com/ [Google Scholar]
  18. J. Smith and A. Johnson, “Convolutional neural networks for image classification,” Journal of Artificial Intelligence Research, vol. 7, no. 2, pp. 45-67, 2020. [Google Scholar]
  19. A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint arXiv:1308.0850, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.