Open Access
Issue |
SHS Web Conf.
Volume 196, 2024
2024 International Conference on Economic Development and Management Applications (EDMA2024)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 6 | |
Section | Finance and Stock Market | |
DOI | https://doi.org/10.1051/shsconf/202419602007 | |
Published online | 02 September 2024 |
- Nabipour M, Nayyeri P, Jabani H, et al. Deep learning for stock market prediction[J]. Entropy, 2020, 22(8): 840. [CrossRef] [Google Scholar]
- Dong, X., Yu, Z., Cao, W. et al. A survey on ensemble learning. Front. Comput. Sci. 14, 241–258 (2020). https://doi.org/10.1007/s11704-019-8208-z [Google Scholar]
- Liu C, Chan Y, Alam Kazmi S H, et al. Financial fraud detection model: Based on random forest[J]. International journal of economics and finance, 2015, 7(7). [Google Scholar]
- Khaidem L, Saha S, Dey S R. Predicting the direction of stock market prices using random forest[J]. arXiv preprint arXiv:1605.00003, 2016. [Google Scholar]
- Zhu L, Qiu D, Ergu D, et al. A study on predicting loan default based on the random forest algorithm[J]. Procedia Computer Science, 2019, 162: 503-513. [CrossRef] [Google Scholar]
- Li Y, Stasinakis C, Yeo W M. A hybrid XGBoost-MLP model for credit risk assessment on digital supply chain finance[J]. Forecasting, 2022, 4(1): 184-207. [CrossRef] [Google Scholar]
- Wang Y, Guo Y. Forecasting method of stock market volatility in time series data based on mixed model of ARIMA and XGBoost[J]. China Communications, 2020, 17(3): 205-221. [CrossRef] [Google Scholar]
- Zhang Y, Chen L. A study on forecasting the default risk of bond based on xgboost algorithm and over-sampling method[J]. Theoretical economics letters, 2021, 11(2): 258-267. [CrossRef] [Google Scholar]
- Nabipour M, Nayyeri P, Jabani H, et al. Deep learning for stock market prediction[J]. Entropy, 2020, 22(8): 840. [CrossRef] [Google Scholar]
- Li Y, Ma W. Applications of artificial neural networks in financial economics: a survey[C]//2010 International symposium on computational intelligence and design. IEEE, 2010, 1: 211-214. [Google Scholar]
- Pawar K, Jalem R S, Tiwari V. Stock market price prediction using LSTM RNN[C]//Emerging Trends in Expert Applications and Security: Proceedings of ICETEAS 2018. Springer Singapore, 2019: 493-503. [Google Scholar]
- Breiman L. Random forests[J]. Machine learning, 2001, 45: 5-32. [CrossRef] [Google Scholar]
- Rigatti S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39. [CrossRef] [Google Scholar]
- Chen T, He T, Benesty M, et al. Xgboost: extreme gradient boosting[J]. R package version 0.4-2, 2015, 1(4): 1-4. [Google Scholar]
- Zhang D, Qian L, Mao B, et al. A data-driven design for fault detection of wind turbines using random forests and XGboost[J]. Ieee Access, 2018, 6: 21020-21031. [CrossRef] [Google Scholar]
- Zupan J. Introduction to artificial neural network (ANN) methods: what they are and how to use them[J]. Acta Chimica Slovenica, 1994, 41(3): 327. [Google Scholar]
- Mao J, Xu W, Yang Y, et al. Deep captioning with multimodal recurrent neural networks (m-rnn)[J]. arXiv preprint arXiv:1412.6632, 2014. [Google Scholar]
- Jain A, Zamir A R, Savarese S, et al. Structural-rnn: Deep learning on spatio-temporal graphs[C]//Proceedings of the ieee conference on computer vision and pattern recognition. 2016: 5308-5317. [Google Scholar]
- Gers F A, Schraudolph N N, Schmidhuber J. Learning precise timing with LSTM recurrent networks[J]. Journal of machine learning research, 2002, 3(Aug): 115-143. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.