Open Access
Issue
SHS Web Conf.
Volume 198, 2024
EduBIM2024 : Données, intelligences et nature de la ville durable
Article Number 03003
Number of page(s) 16
Section Données et durabilité
DOI https://doi.org/10.1051/shsconf/202419803003
Published online 11 October 2024
  1. 5 Emerging Technology Trends and 2018 Hype Cycle. In: Gartner. https://www.gartner.com/en/newsroom/press-releases/2018-08-20-gartner-identifiesfive-emerging-technology-trends-that-will-blur-the-lines-between-human-andmachine. Accessed 29 May 2024 [Google Scholar]
  2. B. Ketzler, V. Naserentin, F. Latino, et al (2020) Digital Twins for Cities: A State of the Art Review. Built Environment 46:547–573. https://doi.org/10.2148/BENV.46.4.547 [CrossRef] [Google Scholar]
  3. A digital twin of Earth for the green transition | Nature Climate Change. https://www.nature.com/articles/s41558-021-00986-y. Accessed 30 May 2024 [Google Scholar]
  4. I. Jacobson (1987) Object-oriented development in an industrial environment. In: Conference proceedings on Object-oriented programming systems, languages and applications. Association for Computing Machinery, New York, NY, USA, pp. 183–191 [CrossRef] [Google Scholar]
  5. M. Shahzad, M. Shafiq, D. Douglas, M. Kassem (2022), Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings 12 (2):120. https://doi.org/10.3390/buildings12020120 [CrossRef] [Google Scholar]
  6. P. Geoffron (2017) Comment transition numérique et transition écologique s’interconnectent-elles? Annales des Mines - Responsabilité & environnement 87, pp. 17–19. https://doi.org/10.3917/re1.087.0017 [CrossRef] [Google Scholar]
  7. T. Tan, Q. Li, B. Boehm, et al. (2009) Productivity trends in incremental and iterative software development. pp. 1–10 [Google Scholar]
  8. X.Y. Ma, H. Hafit (2022) Emergency Notification And Healthcare Mobile Application For Elderly. Applied Information Technology And Computer Science, 3 (1), pp. 264–278 [Google Scholar]
  9. B. García-Mendoza, C. Jaimez-González (2017) A Customisable and Responsive Design Online Booking System. International Journal of Computer Science and Information Technology, 9 (5), pp. 67–86. https://doi.org/10.5121/ijcsit.2017.9506 [CrossRef] [Google Scholar]
  10. V. Albino, U. Berardi, R.M. Dangelico (2015) Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22 (1), pp. 3–21. https://doi.org/10.1080/10630732.2014.942092 [CrossRef] [Google Scholar]
  11. V. Moustaka, A. Maitis, A. Vakali, L.G. Anthopoulos (2021) Urban Data Dynamics: A Systematic Benchmarking Framework to Integrate Crowdsourcing and Smart Cities’ Standardization. Sustainability, 13 (15): 8553. https://doi.org/10.3390/su13158553 [CrossRef] [Google Scholar]
  12. 14:00-17:00 ISO 37120:2018. In: ISO. https://www.iso.org/fr/standard/68498.html. Accessed 21 May 2024 [Google Scholar]
  13. 14:00-17:00 ISO 37122:2019. In: ISO. https://www.iso.org/fr/standard/69050.html. Accessed 17 Jul 2024 [Google Scholar]
  14. 14:00-17:00 ISO 37123:2019. In: ISO. https://www.iso.org/fr/standard/70428.html. Accessed 21 May 2024 [Google Scholar]
  15. H. Dimitrov, D. Petrova-Antonova (2021) 3D city model as a first step towards digital twin of Sofia City. pp. 23–30 [Google Scholar]
  16. X. Pan, D. Mavrokapnidis, H.T. Ly, et al. (2024) Assessing and forecasting collective urban heat exposure with smart city digital twins. Scientific Reports, 14 (9653). https://doi.org/10.1038/s41598-024-59228-8 [Google Scholar]
  17. M. Franzini, V.M. Casella, B. Monti (2023) Assessment of Leica CityMapper-2 LiDAR Data within Milan’s Digital Twin Project. Remote Sensing, 15 (21). https://doi.org/10.3390/rs15215263 [CrossRef] [Google Scholar]
  18. M. Gholami, D. Torreggiani, P. Tassinari, A. Barbaresi (2022) Developing a 3D City Digital Twin: Enhancing Walkability through a Green Pedestrian Network (GPN) in the City of Imola, Italy. Land 11 (11). https://doi.org/10.3390/land11111917 [CrossRef] [Google Scholar]
  19. V. Ramani, M. Ignatius, J. Lim et al. (2023) A Dynamic Urban Digital Twin Integrating Longitudinal Thermal Imagery for Microclimate Studies. pp. 421–428 [Google Scholar]
  20. S. Agostinelli (2021) Actionable Framework For City Digital Twin-Enabled Predictive Maintenance and Security Management Systems. pp. 223–233 [Google Scholar]
  21. U. Leopold, C. Braun, P. Pinheiro (2023) An Interoperable Digital Twin to Simulate Spatio-Temporal Photovoltaic Power Output and Grid Congestion at Neighbourhood and City Levels in Luxembourg. pp. 95–100 [Google Scholar]
  22. L. Chen, X. Li, J. Zhu (2024) Carbon peak control for achieving net-zero renewablebased smart cities: Digital twin modeling and simulation. Sustainable Energy Technologies and Assessments, 65. https://doi.org/10.1016/j.seta.2024.103792 [CrossRef] [Google Scholar]
  23. S. HosseiniHaghighi, P.M.Á. de Uribarri, R. Padsala, U. Eicker (2022) Characterizing and structuring urban GIS data for housing stock energy modelling and retrofitting. Energy and Buildings, 256. https://doi.org/10.1016/j.enbuild.2021.111706 [CrossRef] [Google Scholar]
  24. Luo, P. Liu, L. Cao (2022) Coupling a Physical Replica with a Digital Twin: A Comparison of Participatory Decision-Making Methods in an Urban Park Environment. ISPRS International Journal of Geo-Information, 11. https://doi.org/10.3390/ijgi11080452 [Google Scholar]
  25. B. Turilazzi, G. Leoni, J. Gaspari, et al. (2021) Cultural Heritage and Digital Tools: The Rock Interoperable Platform. International Journal of Environmental Impacts, 4, pp. 276–288. https://doi.org/10.2495/EI-V4-N3-276-288 [CrossRef] [Google Scholar]
  26. B. Royo, D. Politaki, J.N. Gonzalez, A. Batalla (2023) Digital Twin opportunities and benefits in last-mile logistics for Madrid value case. pp 1693–1699 [Google Scholar]
  27. F. Cinquepalmi, G. Piras (2023) Earth Observation Technologies for Mitigating Urban Climate Changes. Urban Book Series Part F813:589-600. https://doi.org/10.1007/978-3-031-29515-7_53 [Google Scholar]
  28. C. Miller, M. Quintana, M. Frei, et al. (2023) Introducing the Cool, Quiet City Competition: Predicting Smartwatch-Reported Heat and Noise with Digital Twin Metrics. pp. 298–299 [Google Scholar]
  29. A.A. Diakite, L. Ng, J. Barton, et al. (2022) Liveable City Digital Twin: A Pilot Project for the City of Liverpool (NSW, Australia). pp. 45–52 [Google Scholar]
  30. B. Lei, P. Liu, N. Milojevic-Dupont, F. Biljecki (2024) Predicting building characteristics at urban scale using graph neural networks and street-level context. Computers, Environment and Urban Systems 111. https://doi.org/10.1016/j.compenvurbsys.2024.102129 [Google Scholar]
  31. K. Karamitov, D. Petrova-Antonova, E. Hristov, M. Borukova (2023) Supply- Demand Analysis of Urban Amenities Based on Walking Accessibility. pp. 3973–3979 [Google Scholar]
  32. C. Chioni, C. Pezzica, S. Favargiotti (2024) Territorial Digital Twins: A key for increasing the community resilience of fragile mountain inner territories? Sustainable Development 32 pp. 1548–1563. https://doi.org/10.1002/sd.2688 [CrossRef] [Google Scholar]
  33. J.L. Bermúdez González, Castaño Perea E., Fernández Tapia E.J. (2023) The time variable in the Territorial Digital Twin: The case of Guadalajara (Spain). Vitruvio 8:38–51. https://doi.org/10.4995/vitruvio-ijats.2023.20828 [CrossRef] [Google Scholar]
  34. P. Liu, T. Zhao, J. Luo, et al. (2023) Towards Human-centric Digital Twins: Leveraging Computer Vision and Graph Models to Predict Outdoor Comfort. Sustainable Cities and Society 93:. https://doi.org/10.1016/j.scs.2023.104480 [Google Scholar]
  35. S. Corrado, F. Scorza (2024) Towards Sustainable Urban Development: Matera’s Urban Digital Twin and Challenges in Data Integration. Lecture Notes in Civil Engineering 467 LNCE:230–236. https://doi.org/10.1007/978-3-031-54118-6_22 [CrossRef] [Google Scholar]
  36. M. Hämäläinen (2021) Urban development with dynamic digital twins in Helsinki city. IET Smart Cities 3:201–210. https://doi.org/10.1049/smc2.12015 [CrossRef] [Google Scholar]
  37. F. Dembski, U. Wössner, M. Letzgus, et al. (2020) Urban digital twins for smart cities and citizens: The case study of herrenberg, germany. Sustainability (Switzerland) 12:. https://doi.org/10.3390/su12062307 [Google Scholar]
  38. S.F. Luna-Romero, C.R. Stempniak, M.A. de Souza, G. Reynoso-Meza (2024) Urban Digital Twins for Synthetic Data of Individuals with Mobility Aids in Curitiba, Brazil, to Drive Highly Accurate AI Models for Inclusivity. Lecture Notes in Networks and Systems 871 LNNS:116–125. https://doi.org/10.1007/978-3-031-52090-7_12 [CrossRef] [Google Scholar]
  39. S. Dey, E. Mallen, B. Stone Jr., Y. Joshi (2024) Using Multiscale Atmospheric Modeling to Explore the Impact of Surface Albedo on Anthropogenic Heat Release. ASME Journal of Heat and Mass Transfer 146:. https://doi.org/10.1115/1.4065088 [Google Scholar]
  40. S. Anselmo, M. Ferrara, S.P. Corgnati, P. Boccardo (2023) Aerial urban observation to enhance energy assessment and planning towards climate-neutrality: A pilot application to the city of Turin. Sustainable Cities and Society 99 (2). https://doi.org/10.1016/j.scs.2023.104938 [CrossRef] [Google Scholar]
  41. X. Li, J. Luo, Y. Li, et al. (2022) Application of effective water-energy management based on digital twins technology in sustainable cities construction. Sustainable Cities and Society 87 (3). https://doi.org/10.1016/j.scs.2022.104241 [Google Scholar]
  42. Huang, J., Zonghui, W., Koroteev, D.D., Rynkovskaya, M. (2024) Energy efficiency security in urban areas: Challenges and implementation. Sustainable Cities and Society 107:. https://doi.org/10.1016/j.scs.2024.105380 [CrossRef] [Google Scholar]
  43. D. Maiullari, C. Nageli, A. Rudena, L. Thuvander (2023) Gothenburg Digital Twin. Modelling and communicating the effect of temperature change scenarios on building demand [Google Scholar]
  44. A. Francisco, N. Mohammadi, J.E. Taylor (2020) Smart City Digital Twin-Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking. Journal of Management in Engineering 36:. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000741 [CrossRef] [Google Scholar]
  45. C. Johannsen, J. Salten, W. Franke (2023) A Whole-of-Government Approach to Climate change and the Process of Making Cities Resilient: Constructing a Digital Twin Network for Urban Adaptation. Progress in IS Part F2546:165–181. https://doi.org/10.1007/978-3-031-18311-9_10 [Google Scholar]
  46. C. Fan, H. Farahmend, A. Mostafavi (2020) Rethinking infrastructure resilience assessment with human sentiment reactions on social media in disasters. pp 1665–1674 [Google Scholar]
  47. Scopus - Document details - Digital Twins for Climate-Neutral and Resilient Cities. State of the Art and Future Development as Tools to Support Urban Decision-Making. https://www-scopus-com.univ-eiffel.idm.oclc.org/record/display.uri?eid=2-s2.0-85163940874&origin=resultslist&sort=plff&src=s&sid=2011a3b7f30e890cf5b149e29e3de2c3&sot=b&sdt=b&s=TITLE-ABSKEY%28%22urban+digital+twin%22%29&sl=35&sessionSearchId=2011a3b7f30e890cf5b149e29e3de2c3&relpos=66. Accessed 29 May 2024 [Google Scholar]
  48. M. Ghaith, A. Yosri, W. El-Dakhakhni (2022) Synchronization-Enhanced Deep Learning Early Flood Risk Predictions: The Core of Data-Driven City Digital Twins for Climate Resilience Planning. Water (Switzerland) 14:. https://doi.org/10.3390/w14223619 [CrossRef] [Google Scholar]
  49. M. Ziehl, R. Herzog, T. Degkwitz, et al. (2023) Transformative Research in Digital Twins for Integrated Urban Development: Two Real-World Experiments on Unpaid Care Workers Mobility. International Journal of E-Planning Research 12:. https://doi.org/10.4018/IJEPR.333851 [CrossRef] [Google Scholar]
  50. H. Josephs, J. Gong, Y. Wang, J. Xia (2024) Urban Digital Twin-Based Decision Support for Housing Rebuilding Choices in Catastrophically Flooded Communities. Pp 1–9 [Google Scholar]
  51. C.S. Shrivastav, A. Masola, N. Capodieci, R. Cavicchioli (2023) Parking Lots Management and Visualization in the Smart City - Digital Twin context. pp. 185–192 [Google Scholar]
  52. D. Mavrokapnidis, N. Mohammadi, J.E. Taylor (2021) Community dynamics in smart city digital twins: A computer vision-based approach for monitoring and forecasting collective urban hazard exposure. pp. 1810–1818 [Google Scholar]
  53. S. Sabri, K. Alexandridis, M. Koohikamali, et al. (2023) Designing a Spatiallyexplicit Urban Digital Twin Framework for Smart Water Infrastructure and Flood Management [Google Scholar]
  54. S. Yu, Q. Lei, C. Liu, et al. (2023) Application research on digital twins of urban earthquake disasters. Geomatics, Natural Hazards and Risk 14:. https://doi.org/10.1080/19475705.2023.2278274 [Google Scholar]
  55. L. Grolleau. Sobriété foncière, comme cas d’usage du jumeau numérique du bâti. Sciences de l’environnement. 2023. ⟨dumas-04510860⟩ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.