Open Access
Issue |
SHS Web Conf.
Volume 203, 2024
SCAN’24 - 11e Séminaire de Conception Architecturale Numérique AI & Architecture
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 12 | |
Section | Approches sociotechniques | |
DOI | https://doi.org/10.1051/shsconf/202420301002 | |
Published online | 13 November 2024 |
- N. Hoyet, F. Duchene, M. De Fouquet, BIM et architecture : programmation, conception, construction, exploitation, 3 (2016) [Google Scholar]
- D.K Abideen, A. Yunusa-Kaltungo, P. Manu, C. Cheung, Sustainability, A Systematic Review of the Extent to Which BIM Is Integrated into Operation and Maintenance, 14 (2022) [Google Scholar]
- R. Kreider, J. Messner, C. Dubler, Proceedings of the 6th International Conference on Innovation in Architecture, Engineering and Construction (AEC), Determining The Frequency And Impact of Applying BIM For Different Purposes On Projects, 9–11 (2010). [Google Scholar]
- Z. Z. Hu, X. Y. Zhang, H. W. Wang, M. Kassem, Automation in Construction, Improving interoperability between architectural and structural design models: An industry foundation classes-based approach with web-based tools, 66, 29–42 (2016). [CrossRef] [Google Scholar]
- A. M. Roxin, Vocabulaires de données liées pour le BIM. Le BIM entre recherche et industrialisation : Ingénierie et architecture, enseignement et recherche, 55 (2019). [Google Scholar]
- P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R. Van de Walle, J. Van Campenhout, Autom. Constr., A semantic rule checking environment for building performance checking, 20, 506–5018 (2011). [CrossRef] [Google Scholar]
- P. Pauwels, W. Terkaj, Autom. Constr., EXPRESS to OWL for construction industry: towards a recommendable and usable ifcOWL ontology, 63, 100–133 (2016). [CrossRef] [Google Scholar]
- P. Pauwels, S. Zhang, Y.-C. Lee, Autom. Constr., Semantic web technologies in AEC industry: a literature overview, 73, 145–165 (2017). [CrossRef] [Google Scholar]
- R. Khan, S. U. Khan, R. Zaheer and S. Khan, 10th International Conference on Frontiers of Information Technology, Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges, 257–260 (2012). [Google Scholar]
- Z. Yu, F. Haghighat, B.C.M. Fung, Sustain. Cities Soc., Advances and challenges in building engineering and data mining applications for energy-efficient communities, 25, 33–38 (2016). [CrossRef] [Google Scholar]
- N. Cotrufo, R. Zmeureanu, Energy Build, PCA-based method of soft fault detection and identification for the ongoing commissioning of chillers, 130, 443–452 (2016). [CrossRef] [Google Scholar]
- A. Beghi, R. Brignoli, L. Cecchinato, G. Menegazzo, M. Rampazzo, F. Simmini, Control Eng. Pract., Data-driven fault detection and diagnosis for HVAC water chillers, 53, 79–91 (2016). [CrossRef] [Google Scholar]
- G. Li, Y. Hu, H. Chen, L. Shen, H. Li, M. Hu, J. Liu, K. Sun, Energy Build., An improved fault detection method for incipient centrifugal chiller faults using the PCA- R-SVDD algorithm, 116, 104–113 (2016). [CrossRef] [Google Scholar]
- K. Yan, W. Shen, T. Mulumba, A. Afshari, Energy Build., ARX model based fault detection and diagnosis for chillers using support vector machines, 81, 287–295 (2014) 287–295. [CrossRef] [Google Scholar]
- K. Yan, Z. Ji, W. Shen, Neurocomputing, Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM, 228, 205–212 (2017). [CrossRef] [Google Scholar]
- K. Yan, L. Ma, Y. Dai, W. Shen, Z. Ji, D. Xie, Int. J. Refrig., Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis, 86, 401–409 (2018). [CrossRef] [Google Scholar]
- M. Bonvini, M.D. Sohn, J. Granderson, M. Wetter, M.A. Piette, Appl. Energy, Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques, 124, 156–166 (2014). [CrossRef] [Google Scholar]
- S. He, Z. Wang, Z. Wang, X. Gu, Z. Yan, Appl. Therm. Eng., Fault detection and diagnosis of chiller using Bayesian network classifier with probabilistic boundary, 107, 37–47 (2016). [CrossRef] [Google Scholar]
- Z. Du, B. Fan, X. Jin, J. Chi, Build. Environ., Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis, 73, 1–11 (2014). [CrossRef] [Google Scholar]
- R. May, The reinforcement learning method : A feasible and sustainable control strategy for efficient occupant-centred building operation in smart cities, (2019). [Google Scholar]
- J.Y. Park, T. Dougherty, H. Fritz, Z. Nagy, Build. Environ., LightLearn: An adaptive and occupant centered controller for lighting based on reinforcement learning, 147, 397–414 (2019). [CrossRef] [Google Scholar]
- Z. Wang, T. Hong, Renew. Sustain. Energy Rev., Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States, (2019). [Google Scholar]
- S. Lee, P. Karava, A. Tzempelikos, I. Bilionis, Build. Environ., Inference of thermal preference profiles for personalized thermal environments with actual building occupants, 148, 714–729 (2019). [CrossRef] [Google Scholar]
- G. Li, H. Chen, Y. Hu, J. Wang, Y. Guo, J. Liu, H. Li, R. Huang, H. Lv, J. Li, Appl. Therm. Eng., An improved decision tree-based fault diagnosis method for practical variable refrigerant flow system using virtual sensor-based fault indicators, 129, 1292–1303 (2018). [CrossRef] [Google Scholar]
- S. Wu, J.Q. Sun, Energy Build., A top-down strategy with temporal and spatial partition for fault detection and diagnosis of building HVAC systems, 43, 2134–2139 (2011). [CrossRef] [Google Scholar]
- B. Fan, Z. Du, X. Jin, X. Yang, Y. Guo, Build. Environ., A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis, 45, 2698–2708 (2010). [CrossRef] [Google Scholar]
- R. Studer, R. Benjamins, D. Fensel. Data & Knowledge Engineering, Knowledge engineering: Principles and methods, 25, 161–198 (1998). [CrossRef] [Google Scholar]
- N. Noy, D. Mcguinness, Knowledge Systems Laboratory, Ontology Development 101: A Guide to Creating Your First Ontology, 32, (2001). [Google Scholar]
- A. Hogan, E. Blomqvist, C. Cochez, G. Melo, S. Gutierrez, J. Labra Gayo, S. Navigli, A. C. Ngonga Ngomo, S. Polleres, A. Rula, J. Schmelzeisen, S. Staab, A. Zimmermann, ACM Comput. Surv., Knowledge Graphs, 54, (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.