Open Access
Issue
SHS Web Conf.
Volume 204, 2024
1st International Graduate Conference on Digital Policy and Governance Sustainability (DiGeS-Grace 2024)
Article Number 04006
Number of page(s) 10
Section Sustainable Digital Governance
DOI https://doi.org/10.1051/shsconf/202420404006
Published online 25 November 2024
  1. Y. Kim, K.-H.N. Bui, J.J. Jung, Data-driven exploratory approach on player valuation in football transfer market, Concurr. Comput. Pract. Exp. 33 (2019) e5353. [Google Scholar]
  2. B. Gerrard, Achieving transactional efficiency in professional team sports: The theory and practice of player valuation, in: Handb. Econ. Prof. Footb., Edward Elgar Publishing, 2014: pp. 189–202. [Google Scholar]
  3. A.E. Aydemir, A DATA DRIVEN PERFORMANCE EVALUATION FRAMEWORK FOR SPORTS ANALYTICS, (2021). [Google Scholar]
  4. R. Stanojevic, L. Gyarmati, Towards data-driven football player assessment, in: 2016 IEEE 16th Int. Conf. Data Min. Work., 2016: pp. 167–172. [Google Scholar]
  5. M. Franceschi, J.-F. Brocard, F. Follert, J.-J. Gouguet, Determinants of football players’ valuation: A systematic review, J. Econ. Surv. (2023). [Google Scholar]
  6. R. Poli, R. Besson, L. Ravenel, Econometric approach to assessing the transfer fees and values of professional football players, Economies 10 (2021) 4. [CrossRef] [Google Scholar]
  7. O. Müller, A. Simons, M. Weinmann, Beyond crowd judgments: Data-driven estimation of market value in association football, Eur. J. Oper. Res. 263 (2017) 611–624. [CrossRef] [Google Scholar]
  8. M. Houshyar, H. Sotudeh, A reflection on the applicability of Google Scholar as a tool for comprehensive retrieval in bibliometric research and systematic reviews, Int. J. Inf. Sci. Manag. 16 (2018). [Google Scholar]
  9. V. Braun, V. Clarke, Using thematic analysis in psychology, Qual. Res. Psychol. 3 (2006) 77–101. [CrossRef] [Google Scholar]
  10. R.S. Tunaru, H.P. Viney, Valuations of soccer players from statistical performance data, J. Quant. Anal. Sport. 6 (2010). [Google Scholar]
  11. C. Poza, A Conceptual Model to Measure Football Player’s Market Value. A Proposal by means of an Analytic Hierarchy Process.Un modelo conceptual para medir el valor de mercado de los futbolistas. Una propuesta a través de un proceso anal{\’\i}tico jerárquico.., RICYDE. Rev. Int. Ciencias Del Deport. Doi 10.5232/Ricyde 16 (2019) 24–42. [Google Scholar]
  12. D. Patnaik, H. Praharaj, K. Prakash, K. Samdani, A study of Prediction models for football player valuations by quantifying statistical and economic attributes for the global transfer market, in: 2019 IEEE Int. Conf. Syst. Comput. Autom. Netw., 2019: pp. 1–7. [Google Scholar]
  13. D. Coluccia, S. Fontana, S. Solimene, An application of the option-pricing model to the valuation of a football player in the’Serie A League’, Int. J. Sport Manag. Mark. 18 (2018) 155–168. [Google Scholar]
  14. L. Szczepanski, Assessing the skill of football players using statistical methods, University of Salford (United Kingdom), 2015. [Google Scholar]
  15. M. Tayebi, M. Soltan Hoseini, M. Salimi, S. Lenjannezhadian, Comparison of Linear Regression and Artificial Neural Network Methods for Estimating the Price of Iranian Professional Football Players, Sport Manag. Stud. 14 (2022) 117–154. [Google Scholar]
  16. T.A. Herberger, F. Wedlich, Does selection bias matter in football players’ valuation? A crowdsourced valuation approach on players’ athletic characteristics, J. Glob. Sport Manag. 2 (2017) 196–214. [CrossRef] [Google Scholar]
  17. M.K. Lorincz, Estimating the market value of attacking football players using multiple linear regression, 2022. [Google Scholar]
  18. I.G. McHale, B. Holmes, Estimating transfer fees of professional footballers using advanced performance metrics and machine learning, Eur. J. Oper. Res. 306 (2023) 389–399. [CrossRef] [Google Scholar]
  19. T. Inan, L. Cavas, Estimation of market values of football players through artificial neural network: a model study from the turkish super league, Appl. Artif. Intell. 35 (2021) 1022–1042. [CrossRef] [Google Scholar]
  20. P. Singh, P.S. Lamba, Influence of crowdsourcing, popularity and previous year statistics in market value estimation of football players, J. Discret. Math. Sci. Cryptogr. 22 (2019) 113–126. [CrossRef] [Google Scholar]
  21. L. Richau, F. Follert, M. Frenger, E. Emrich, Performance indicators in football: The im-portance of actual performance for the market value of football players, Sciamus--Sport Und Manag. 10 (2010) 41–67. [Google Scholar]
  22. M.A. Al-Asadi, S. Tasdemir, Predict the value of football players using FIFA video game data and machine learning techniques, IEEE Access 10 (2022) 22631–22645. [CrossRef] [Google Scholar]
  23. R. Nazari, S. Azari, Predicting Market Value of Iranian Football Players Using Linear Modeling Techniques, Res. Sport Manag. Mark. 2 (2021) 41–53. [Google Scholar]
  24. Y. He, Predicting market value of soccer players using linear modeling techniques, Univ. Berkeley (Working Pap. (2012). [Google Scholar]
  25. S. Anjum, A. Fatima, Predictive Analytics For FIFA Player Prices: An ML Approach, J. Sci. Res. Technol. (2023) 204–212. [Google Scholar]
  26. S. Dey, Pricing Football Players using Neural Networks, ArXiv Prepr. ArXiv 1711.05865 (2017). [Google Scholar]
  27. Y. Li, When Moneyball Meets the Beautiful Game: A Predictive Analytics Approach to Exploring Key Drivers for Soccer Player Valuation, (2021). [Google Scholar]
  28. M. Keshtidar, M. Talebpour, S. Abdi, M.Z. Abadi, A prediction model for valuing players in the Premier Football League of Iran., Int. Sport. Stud. 39 (2017). [CrossRef] [Google Scholar]
  29. A.T. Vigil, B. Samak, T. Kaya, Football player value assessment using machine learning techniques, in: Intell. Fuzzy Tech. Big Data Anal. Decis. Mak. Proc. INFUS 2019 Conf. Istanbul, Turkey, July 23-25, 2019, 2020: pp. 289–297. [Google Scholar]
  30. V.H. Sayan, E. Hancer. A Survey on Football Player Performance and Value Estimation Using Machine Learning Techniques, Sci. J. Mehmet Akif Ersoy Univ. 5 (2022) 57–62. [Google Scholar]
  31. V.M. Payyappalli, J. Zhuang, A data-driven integer programming model for soccer clubs’ decision making on player transfers, Environ. Syst. Decis. 39 (2019) 466–481. [CrossRef] [Google Scholar]
  32. N. Sahakyan, T. Avetisyan, H. Avetisyan, A. Khan-Aslanyan, H. Madoyan, Analyzing soccer’s transfers and predicting footballers’ transfer price, Capstone Proj. Thesis. Am. Univ. Armen. Yerevan. Doi 10 (2020). [Google Scholar]
  33. C. Li, S. Kampakis, P. Treleaven, Machine learning modeling to evaluate the value of football players, ArXiv Prepr. ArXiv 2207.11361 (2022). [Google Scholar]
  34. L. Pappalardo, P. Cintia, P. Ferragina, E. Massucco, D. Pedreschi, F. Giannotti, PlayeRank: data-driven performance evaluation and player ranking in soccer via a machine learning approach, ACM Trans. Intell. Syst. Technol. 10 (2019) 1–27. [CrossRef] [Google Scholar]
  35. H. Lee, B.A. Tama, M. Cha, Prediction of Football Player Value using Bayesian Ensemble Approach, ArXiv Prepr. ArXiv 2206.13246 (2022). [Google Scholar]
  36. V.C. Pantzalis, C. Tjortjis, Sports analytics for football league table and player performance prediction, in: 2020 11th Int. Conf. Information, Intell. Syst. Appl. (IISA, 2020: pp. 1–8. [Google Scholar]
  37. P. Toma, F. Campobasso, Using data analytics to capture the strategic and financial decision-making of Europe’s top football club, Technol. Forecast. Soc. Change 186 (2023) 122116. [CrossRef] [Google Scholar]
  38. M. Datta, B. Rudra, An Intelligent Decision Support System for Bid Prediction of Undervalued Football Players, in: 2022 2nd Int. Conf. Intell. Technol., 2022: pp. 1–8. [Google Scholar]
  39. A.E. Aydemir, T.T. Temizel, A. Temizel, K. Preshlenov, D.M. Strahinov, A dimension reduction approach to player rankings in European football, IEEE Access 9 (2021) 119503–119519. [CrossRef] [Google Scholar]
  40. I. Behravan, S.M. Razavi, A novel machine learning method for estimating football players’ value in the transfer market, Soft Comput. 25 (2021) 2499–2511. [CrossRef] [Google Scholar]
  41. U. Lichtenthaler, Mixing data analytics with intuition: Liverpool Football Club scores with integrated intelligence, J. Bus. Strategy 43 (2022) 10–16. [CrossRef] [Google Scholar]
  42. V.B. Jishnu, P.V.H. Narayanan, S. Aanand, P.T. Joy, Football Player Transfer Value Prediction Using Advanced Statistics and FIFA 22 Data, in: 2022 IEEE 19th India Counc. Int. Conf., 2022: pp. 1–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.