Open Access
Issue
SHS Web Conf.
Volume 208, 2024
2024 International Workshop on Digital Strategic Management (DSM 2024)
Article Number 04012
Number of page(s) 11
Section Chapter 4: Digital Management Case Studies
DOI https://doi.org/10.1051/shsconf/202420804012
Published online 12 December 2024
  1. H. Liu, Y. Wang. Study on Volatility of Stock Market: Empirical Analysis Based on ARMA-TGARCH-M Model. J. PKU. Aeronaut. Astronautics Soc. Sci. Edit. 30(4), 56-66 (2017) [Google Scholar]
  2. S. Fatima, M. Uddin. On the forecasting of multivariate financial time series using hybridization of DCC-GARCH model and multivariate ANNs. Neural Comput. Applic. 34, 21911–21925 (2022) [CrossRef] [Google Scholar]
  3. Y. Qiu, W. Zhang. Spatial and temporal evolution of urban network in China from the perspective of high-speed rail flow. Resour. Environ. Yangtze. 33(06), 1197-1212 (2019). [Google Scholar]
  4. H. Xiong, Feng Shi, J. Zhou. China’s new energy stock market returns and volatility correlation. J. Fudan Univ., Nat. Sci. tobacco. 2, 236-245 + 256. (2024). [Google Scholar]
  5. O. Ozkan, S. Abosedra, A. Sharif, et al. Dynamic volatility among fossil energy, clean energy and major assets: evidence from the novel DCC-GARCH. Econ. Change Restruct. 57, 98 (2024) [CrossRef] [Google Scholar]
  6. H.D. Vinod. Generalized, Partial and Canonical Correlation Coefficients. Comput. Econ. 60, 1479–1506 (2022) [CrossRef] [Google Scholar]
  7. S. Meng, J. Xu. The Shanghai index of risk measurement based on GARCH - VaR model. J. modeling Simul. 12(6), 5187-5195 (2023) [CrossRef] [Google Scholar]
  8. D. Bauer. Information-Criterion-Based Lag Length Selection in Vector Autoregressive Approximations for I(2) Processes. Econometrics. 11(2), 11 (2023) [CrossRef] [Google Scholar]
  9. B. Wang, M. Waris, K. Adamiak, M. Adnan, H. A. Hamad, S. M. Bhatti. The effects of the COVID-19 pandemic period on stock market return and volatility. Evidence from the Pakistan Stock Exchange. PLOS ONE. 19(4), e0295853 (2024) [CrossRef] [Google Scholar]
  10. A. Ampountolas. Cryptocurrencies Intraday High-Frequency Volatility Spillover Effects Using Univariate and Multivariate GARCH Models. Int. J. Financ. Stud. 10(3), 51 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.