Open Access
Issue
SHS Web Conf.
Volume 213, 2025
2025 International Conference on Management, Economic and Sustainable Social Development (MESSD 2025)
Article Number 01017
Number of page(s) 8
Section Management and Sustainable Economy
DOI https://doi.org/10.1051/shsconf/202521301017
Published online 25 March 2025
  1. Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014, March). Stock price prediction using the ARIMA model. In 2014 UKSim-AMSS 16th international conference on computer modelling and simulation (pp. 106-112). IEEE. [Google Scholar]
  2. Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE transactions on power systems, 18(3), 1014-1020. [Google Scholar]
  3. Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. Automated machine learning: Methods, systems, challenges, 3-33. [Google Scholar]
  4. Heermann, P. D., & Khazenie, N. (1992). Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Transactions on geoscience and remote sensing, 30(1), 81-88. [Google Scholar]
  5. Hwang, J. N., Lay, S. R., Maechler, M., Martin, R. D., & Schimert, J. (1994). Regression modeling in back-propagation and projection pursuit learning. IEEE Transactions on neural networks, 5(3), 342-353. [Google Scholar]
  6. Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6), 183-197. [CrossRef] [Google Scholar]
  7. Picard, R. R., & Cook, R. D. (1984). Cross-validation of regression models. Journal of the American Statistical Association, 79(387), 575-583. [Google Scholar]
  8. Radulović, D., & Negovanović, D. (2021). Gait speed prediction based on walking parameters using MLPRegressor. Ri-STEM-2021, 13. [Google Scholar]
  9. Šegota, S. B., Glučina, M., Štifanić, D., Musulin, J., Lorencin, I., Anđelić, N., & Car, Z. Determining the Influence of Hardware on the Execution Times of Trained Machine Learning Models. Ri-STEM-2022, 81. [Google Scholar]
  10. Shen, X., Gong, X., Cai, Y., Guo, Y., Tu, J., Li, H.,. .. & Zhu, Z. J. (2016). Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics, 12, 1-12. [CrossRef] [Google Scholar]
  11. Shi, Y., Zhao, X. T., Zhang, Y. M., & Ren, N. Q. (2009). Back propagation neural network (BPNN) prediction model and control strategies of methanogen phase reactor treating traditional Chinese medicine wastewater (TCMW). Journal of Biotechnology, 144(1), 70-74. [Google Scholar]
  12. Zhang, Y. (1999). A new merging method and its spectral and spatial effects. International Journal of Remote Sensing, 20(10), 2003-2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.