Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01005
Number of page(s) 7
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601005
Published online 23 May 2025
  1. J. Chen, Q. Li, Deep learning for predicting climate change impacts on agricultural pest populations. Environmental Modelling & Software 176, 105065 (2023). https://doi.org/10.1016/j.envsoft.2023.105065 [Google Scholar]
  2. X. Cheng, X. Liu, Deep learning for forecasting climate-driven shifts in agricultural productivity. Remote Sensing 14(13), 3191 (2022). https://doi.org/10.3390/rs14133191 [CrossRef] [Google Scholar]
  3. P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian Journal of Information Sources and Services 10(1), 48–55 (2020) [CrossRef] [Google Scholar]
  4. S.T. Chong, Y.J. Ng, M.F. Chow, A.Z. Abd Rahman, K.S. Loh, J. Karthikeyan, A case study of trauma narrative for civil engineering students on hydrometeorological disaster victims in Malaysia, in 2020 IEEE Global Engineering Education Conference (EDUCON), April (2020), pp. 429–433 [CrossRef] [Google Scholar]
  5. K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. Journal of Internet Services and Information Security 13(4), 158–169 (2023) [CrossRef] [Google Scholar]
  6. L. Gao, W. Yang, Deep learning approaches for assessing climate change impacts on crop yield and quality. Agricultural Water Management 264, 107801 (2022). https://doi.org/10.1016/j.agwat.2022.107801 [Google Scholar]
  7. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016) [Google Scholar]
  8. X. Huang, Y. Zhang, Deep learning for climate-resilient agriculture: An overview of applications and methodologies. Computers and Electronics in Agriculture 203, 107354 (2024). https://doi.org/10.1016/j.compag.2022.107354 [Google Scholar]
  9. P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 11(4), 77–96 (2020) [Google Scholar]
  10. V. Kumar, S. Sharma, Utilizing deep learning for climate change adaptation strategies in precision agriculture. Journal of Precision Agriculture 25(1), 54–67 (2023). https://doi.org/10.1007/s11119-023-09764-3 [Google Scholar]
  11. T. Li, J. Zhang, Applying deep learning to optimize crop management practices in the face of climate change. Journal of Cleaner Production 363, 132473 (2022). https://doi.org/10.1016/j.jclepro.2022.132473 [Google Scholar]
  12. D.B. Lobell, W. Schlenker, J. Costa-Roberts, Climate trends and global crop production since 1980. Science 333(6042), 616–620 (2011) [CrossRef] [PubMed] [Google Scholar]
  13. M. Reddy, A. Patel, Predicting soil moisture variations with deep learning to combat climate change impacts on agriculture. Hydrology and Earth System Sciences 27(4), 1083–1095 (2023). https://doi.org/10.5194/hess-27-1083-2023 [Google Scholar]
  14. S. Kimothi, A. Thapiyal, A. Gehlot, A.N. Aledaily, A. Gupta, Spatio-temporal fluctuations analysis of land surface temperature (LST) using Remote Sensing data (Landsat TM5/8) and multifractal technique to characterize the urban heat Islands (UHIs). Sustainable Energy Technologies and Assessments (2022). https://doi.org/10.1016/j.seta.2022.102809 [Google Scholar]
  15. Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Natural and Engineering Sciences 8(3), 214–232 (2023) [CrossRef] [Google Scholar]
  16. A. Singh, R. Gupta, Enhancing climate-smart irrigation systems with deep learning. Water Resources Research 60(9), e2023WR035912 (2023). https://doi.org/10.1029/2023WR035912 [Google Scholar]
  17. K. Alibabaei, P.D. Gaspar, T.M. Lima, Crop yield estimation using deep learning based on climate big data and irrigation scheduling. Energies 14(11), 3004 (2021) [CrossRef] [Google Scholar]
  18. J. Wang, L. Zhao, Forecasting climate change impacts on crop yields using deep learning models: A case study in the Midwest USA. Agricultural Systems 212, 103734 (2024). https://doi.org/10.1016/j.agsy.2023.103734 [Google Scholar]
  19. Y. Zhang, M. Liu, Real-time monitoring of crop health and soil conditions using deep learning and IoT under climate change. Journal of Agricultural Informatics 14(2), 65–80 (2023). https://doi.org/10.1007/s11975-023-00389-7 [Google Scholar]
  20. F. Wang, L. Han, L. Liu, C. Bai, J. Ao, H. Hu, Y. Wei, Advancements and Perspective in the Quantitative Assessment of Soil Salinity Utilizing Remote Sensing and Machine Learning Algorithms: A Review. Remote Sensing 16(24), 4812 (2024) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.