Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 12 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601012 | |
Published online | 23 May 2025 |
- S. Lockie, K. Fairley-Grenot, R. Ankeny, L. Botterill, B. Howlett, A. Mcbratney, E. Probyn, T. Sorrell, S. Sukkarieh, I. Woodhead, The future of agricultural technologies. Australian Council of Learned Academies (ACOLA) (2020). https://researchonline.jcu.edu.au/67640/ [Google Scholar]
- K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J. Internet Serv. Inf. Secur. 13(4), 158–169 (2023) [Google Scholar]
- E.S. Mohamed, A.A. Belal, S.K. Abd-Elmabod, M.A. El-Shirbeny, A. Gad, M.B. Zahran, Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 24(3), 971–981 (2021) [Google Scholar]
- A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12(4), 177–196 (2022) [Google Scholar]
- Z.H. Kok, A.R.M. Shariff, M.S.M. Alfatni, S. Khairunniza-Bejo, Support vector machine in precision agriculture: a review. Comput. Electron. Agric. 191, 106546 (2021) [CrossRef] [Google Scholar]
- K. Veerasamy, E.J.T. Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14(4), 45–59 (2023) [Google Scholar]
- H. Tian, T. Wang, Y. Liu, X. Qiao, Y. Li, Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 7(1), 1–19 (2020) [Google Scholar]
- P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10(1), 48–55 (2020) [Google Scholar]
- A. Nowakowski, J. Mrziglod, D. Spiller, R. Bonifacio, I. Ferrari, P.P. Mathieu, M. Garcia-Herranz, D-H. Kim, Crop type mapping by using transfer learning. Int. J. Appl. Earth Obs. Geoinf. 98, 102313 (2021) [Google Scholar]
- L. Alamer, I.M. Alqahtani, E. Shadadi, Intelligent Health Risk and Disease Prediction Using Optimized Naive Bayes Classifier. J. Internet Serv. Inf. Secur. 13(1), 01–10 (2023) [Google Scholar]
- R. Sharma, Artificial intelligence in agriculture: a review, in Proceedings of the 5th international conference on intelligent computing and control systems (ICICCS), pp. 937–942 (2021) [Google Scholar]
- M. Rao, S. Kumar, K. Rao, Effective medical leaf identification using hybridization of GMMCNN. Int. J. Exp. Res. Rev. 32, 115–123 (2023) [CrossRef] [Google Scholar]
- B.B. Sinha, R. Dhanalakshmi, Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Gener. Comput. Syst. 126, 169–184 (2022) [CrossRef] [Google Scholar]
- A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12(4), 177–196 (2022). https://doi.org/10.58346/JISIS.2022.I4.013 [Google Scholar]
- R. Parvez, T. Ahmed, M. Ahsan, S. Arefin, N.H.K. Chowdhury, F. Sumaiya, M. Hasan, Integrating Multinomial Logit and Machine Learning Algorithms to Detect Crop Choice Decision Making, in Proceedings of the IEEE International Conference on Electro Information Technology (eIT), pp. 525–531 (2024) [Google Scholar]
- H. Mumtaj Begum, Scientometric Analysis of the Research Paper Output on Artificial Intelligence: A Study. Indian J. Inf. Sources Serv. 12(1), 52–58 (2022) [Google Scholar]
- V. Geetha, A. Punitha, M. Abarna, M. Akshaya, S. Illakiya, A.P. Janani, An effective crop prediction using random forest algorithm, in Proceedings of the international conference on system, computation, automation and networking (ICSCAN), pp. 1–5 (2020) [Google Scholar]
- P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 11(4), 77–96 (2020) [Google Scholar]
- M. Li, Z. Zhang, L. Lei, X. Wang, X. Guo, Agricultural greenhouses detection in highresolution satellite images based on convolutional neural networks: Comparison of faster RCNN, YOLO v3 and SSD. Sensors 20(17), 4938 (2020) [CrossRef] [PubMed] [Google Scholar]
- A. Dessy, D. Ratna, L. Seni, Y. Heryadi, F. Satma, I.G.I.S., R. Robbi, Using Distance Measure to Perform Optimal Mapping with the K-Medoids Method on Medicinal Plants, Aromatics, and Spices Export. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14(3), 103–111 (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.