Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 6 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601018 | |
Published online | 23 May 2025 |
- S. Ahmed, A. Ali, M.A. Siddiqui, AI-powered IoT systems for precision agriculture: Applications and challenges in semi-arid regions. J. Agric. Inform. 12, 67–80 (2021). https://doi.org/10.1007/978-3-030-71172-6_8 [Google Scholar]
- J.N. Chauhdary, H. Li, Y. Jiang, X. Pan, Z. Hussain, M. Javaid, M. Rizwan, Advances in sprinkler irrigation: a review in the context of precision irrigation for crop production. Agronomy 14, 47 (2023). https://doi.org/10.3390/agronomy14010047 [CrossRef] [Google Scholar]
- A.T. Balafoutis, B. Beck, S. Fountas, Z. Tsiropoulos, J. Vangeyte, T. van der Wal, … B. Basso, Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics.. Sustainability 12, 2548 (2020). https://doi.org/10.3390/su9081339 [CrossRef] [Google Scholar]
- K. Sharma, S.K. Shivandu, Integrating artificial intelligence and internet of things (IoT) for enhanced crop monitoring and management in precision agriculture. Sens. Int. 100292 (2024). https://doi.org/10.1016/j.sintl.2024.100292 [Google Scholar]
- Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8, 214–232 (2023). https://doi.org/10.28978/nesciences.1405175 [Google Scholar]
- P.P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, A. Zaslavsky, Internet of Things platform for smart farming: Experiences and lessons learnt. Sensors 16, 1884 (2016). https://doi.org/10.3390/s16111884 [CrossRef] [Google Scholar]
- K. Jha, A. Doshi, P. Patel, M. Shah, A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2, 1–12 (2019). https://doi.org/10.1016/j.aiia.2019.05.004 [Google Scholar]
- A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: A survey. Comput. Electron. Agric. 147, 70–90 (2018). https://doi.org/10.1016/j.compag.2018.02.016 [CrossRef] [Google Scholar]
- M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, R. Kaliaperumal, Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 12, 1745 (2022). https://doi.org/10.3390/agriculture12101745 [CrossRef] [Google Scholar]
- N. Ahmed, D. De, I. Hussain, Internet of Things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet Things J. 5, 4890–4899 (2018). https://doi.org/10.1109/JIOT.2018.2879579 [CrossRef] [Google Scholar]
- P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10, 48–55 (2020). https://doi.org/10.2139/ssrn.3764184 [Google Scholar]
- A.A. AlZubi, K. Galyna, Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access 11, 78686–78692 (2023). https://doi.org/10.1109/ACCESS.2023.3294871 [CrossRef] [Google Scholar]
- S. Munusamy, S.N.S. Al-Humairi, M.I. Abdullah, Automatic irrigation system: Design and implementation, in Proceedings of the IEEE 11th Symposium on Computer Applications and Industrial Electronics (ISCAIE), 256–260 (2021). https://doi.org/10.1109/ISCAIE51753.2021.9431829 [Google Scholar]
- A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12, 177–196 (2022). https://doi.org/10.22667/JISIS.2022.11.30.177 [Google Scholar]
- N.N. Misra, Y. Dixit, A. Al-Mallahi, M.S. Bhullar, R. Upadhyay, A. Martynenko, IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 9, 6305–6324 (2020). https://doi.org/10.1109/JIOT.2020.2998584 [Google Scholar]
- P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wireless Mobile Netw. Ubiquitous Comput. Dependable Appl. 11, 77–96 (2020). https://doi.org/10.22667/JOWUA.2020.12.31.077 [Google Scholar]
- S. Wolfert, L. Ge, C. Verdouw, M.J. Bogaardt, Big data in smart farming: A review. Agric. Syst. 153, 69–80 (2017). https://doi.org/10.1016/j.agsy.2017.01.023 [CrossRef] [Google Scholar]
- S. Zhang, Y. Wang, H. Sun, Research on the application of artificial intelligence in agriculture, in Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), 264–268 (2020). https://doi.org/10.1016/j.aiia.2020.07.002 [Google Scholar]
- T. Wang, X. Xu, C. Wang, Z. Li, D. Li, From smart farming towards unmanned farms: A new mode of agricultural production. Agriculture 11, 145 (2021). https://doi.org/10.3390/agriculture11020145 [CrossRef] [Google Scholar]
- Y. Zhao, S. Liu, F. Chen, Predictive analytics in agriculture: AI and IoT integration for wheat farming in temperate regions. Comput. Electron. Agric. 175, 105572 (2020). https://doi.org/10.1080/10408347.2025.2 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.