Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 7 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601027 | |
Published online | 23 May 2025 |
- F.J. Adha, R. Ramli, M.H. Alkawaz, M.G.M. Johar, A.I. Hajamydeen, Assessment of Conceptual Framework for Monitoring Poultry Farm's Temperature and Humidity. IEEE 11th International Conference on System Engineering and Technology, ICSET 2021 -Proceedings, 40–45 (2021). https://doi.org/10.1109/ICSET53757.2021.9612437 [Google Scholar]
- P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian Journal of Information Sources and Services 10(1), 48–55 (2020). https://doi.org/10.2139/ssrn.3764184 [CrossRef] [Google Scholar]
- T.T.N. Nguyen, T.L. Le, H. Vu, V.S. Hoang, T.H. Tran, Crowdsourcing for botanical data collection towards to automatic plant identification: a review. Comput. Electron. Agric. 155, 412–425 (2018). https://doi.org/10.1016/j.compag.2018.10.038 [CrossRef] [Google Scholar]
- K.P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018). https://doi.org/10.1016/j.compag.2018.01.009 [CrossRef] [Google Scholar]
- H.A. Singh, A.M.A. Singh, A Hybrid Approach of Deep Learning and Optimization for Medical Plant Recognition and Classification. Int. Res. J. Adv. Eng. Sci. 8(4), 94–100 (2023) [Google Scholar]
- N.K. Gogoi, B. Deka, L.C. Bora, Remote sensing and its use in detection and monitoring plant diseases: A review. Agric. Rev. 39(4), 307–313 (2018). https://doi.org/10.18805/ag.R-1843 [Google Scholar]
- S.A. Rashwan, M.K. Elteir, Plant leaf disease detection using deep learning on mobile devices. Int. J. Comput. Vis. Robot. 12(2), 156–176 (2022). https://doi.org/10.1504/IJCVR.2022.121151 [CrossRef] [Google Scholar]
- L. Alamer, I.M. Alqahtani, E. Shadadi, Intelligent Health Risk and Disease Prediction Using Optimized Naive Bayes Classifier. J. Internet Serv. Inf. Secur. 13(1), 01–10 (2023) [Google Scholar]
- S.P. Mohanty, D.P. Hughes, M. Salathé, Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016). https://doi.org/10.3389/fpls.2016.01419 [CrossRef] [Google Scholar]
- P.V. Méndez-Zambrano, L.P. Tierra Pérez, R.E. Ureta Valdez, Á.P. Flores Orozco, Technological innovations for agricultural production from an environmental perspective: A review. Sustainability 15(22), 16100 (2023). https://doi.org/10.3390/su152216100 [CrossRef] [Google Scholar]
- K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J. Internet Serv. Inf. Secur. 13(4), 158–169 (2023) [Google Scholar]
- S. Kimothi, R. Singh, A. Gehlot, S.V. Akram, P.K. Malik, A. Gupta, N. Bilandi, Intelligent energy and ecosystem for real-time monitoring of glaciers. Int. J. Comput. Electr. Eng. 102, 108193 (2022). https://doi.org/10.1016/j.compeleceng.2022.108193 [CrossRef] [Google Scholar]
- Z. Li, T. Yu, R. Paul, J. Fan, Y. Yang, Q. Wei, Agricultural nanodiagnostics for plant diseases: recent advances and challenges. Nanoscale Adv. 2(8), 3083–3094 (2020). https://doi.org/10.1039/D0NA00301H [CrossRef] [Google Scholar]
- P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Depend. Appl. 11(4), 77–96 (2020) [Google Scholar]
- H. Yao, J. Zhang, X. Liu, Open-source technologies for plant disease monitoring: Cost-effective solutions for developing regions. Comput. Electron. Agric. 194, 106741 (2022) [CrossRef] [Google Scholar]
- A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12(4), 177–196 (2022) [Google Scholar]
- S.A. Zaidi, V. Chouvatut, Mae Mai Muay Thai Style Classification in Movement Appling Long-Term Recurrent Convolution Networks. J. Internet Serv. Inf. Secur. 13(1), 95–112 (2023) [Google Scholar]
- K. Veerasamy, E.J. Thomson Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Depend. Appl. 14(4), 45–59 (2023) [Google Scholar]
- J. Wang, Y. Wang, G. Li, Z. Qi, Integration of remote sensing and machine learning for precision agriculture: a comprehensive perspective on applications. Agronomy 14(9), 1975 (2024). https://doi.org/10.3390/agronomy14091975 [CrossRef] [Google Scholar]
- Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8(3), 214–232 (2023). https://doi.org/10.28978/nesciences.1405175 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.